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We analyze the structure of attractors in the classical XY model with the associative
memory type interaction by the statistical mechanical method. Previously, it was found
that when patterns are uncorrelated, points on a path connecting two memory patterns
in the space of order parameters are solutions of the saddle point equations (SPEs) in
the case that p is O(1) irrespective of N and N > 1, where p and N are the numbers
of patterns and spins, respectively. This state is called the continuous attractor (CA).
In this paper, we clarify the conditions for the existence and the stability of the CA
with and without the correlation a (0 < a < 1) between any two patterns in the case
that N > 1 and the self-averaging property holds. We find that the CA exists for any
p > 2 when a = 0, but it exists only for p = 2 when 0 < a < 1 and for p = 3 when
a < 1/3. For p = 2 and 3, and for a < 1, we analyze the SPEs and find all solutions
and study their stabilities. We perform the Markov chain Monte Carlo simulations and
compare numerical and theoretical results. We find for the finite system size N and
for a = 0, due to the breakdown of the self-averaging property, the CA ceases to exist
at the finite value of p. We define the critical value of p. until which the CA exists,
and numerically study the system size N dependence of p., and find that numerical
results are consistent with the theoretical results obtained by taking into account the
breakdown of the self-averaging property. Furthermore, for a > 0, we numerically study
the case that patterns are subject to external noise, and find that p. increases as the

noise amplitude increases.
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1. Introduction

Since Hopfield proposed a model of the associative memory of a neural network,"

many studies on the subject have been done from the viewpoint of statistical mechan-
ics? -.7) In many studies, states of neurons are represented by Ising spins as in the
Hopfield model. In our previous study,® however, we adopted the classical XY spins
as states of neurons. The main motivation for this is that we wanted to construct an
associative memory model with the following properties that real brains have. In real
brains, different memories spontaneously appear one after another, and by an external
stimulus, the memory related to the stimulus is retrieved. That is, it seems that many
memories in a real brain are “connected” in a sense. We expected that associative mem-
ory models composed of the XY spins may have such connected memories because they
have a continuous degree of freedom contrary to models composed of the Ising spins
which have only isolated memories, i.e., point attractors.
We analyzed the XY spin system with the associative memory interaction by the sta-
tistical mechanical method in the case that p is O(1) irrespective of N and N > 1,
where p and N are the numbers of patterns and spins, respectively, when patterns are
uncorrelated. We derived the saddle point equations (SPEs) for the order parameters,
and by numerically solving the SPEs we found a new type of attractor, the so-called
continuous attractor (CA). The CA is a one-parameter family of solutions of the SPEs,
and the points on a path connecting any two memory patterns in the space of order pa-
rameters become solutions, which we expected to exist in the XY spin system. See Fig.
1. We performed the Markov chain Monte Carlo simulations (MCMCs) and confirmed
the theoretical results numerically.

In this paper, we study the two cases that patterns are uncorrelated and correlated,
in the case that N > 1 and the self-averaging property holds. Let a be the correlation
between any two patterns, 0 < a < 1. By introducing sublattices we rewrite the SPEs
in a compact form, which allows us to characterize the CA and enables us to study
solutions of the SPEs and their stabilities analytically. Then, we find the conditions
for the existence with and without the correlation a. The CA exists for any p when
a = 0, whereas it exists only for p = 2 when 0 < a < 1 and for p = 3 when a < %
We perform MCMCs and compare numerical and theoretical results. When a = 0,
contrary to the theoretical result, numerical results show that the CA ceases to exist

at the finite value of p. We define the critical value of p. until which the CA exists,
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Fig. 1. Schematic figures of point attractors and continuous attractors. £ denotes a pattern. Left:
dips represent point attractors. A dip in the middle is a mixed state composed of three patterns. Right:

valleys represent continuous attractors.

and numerically study the N dependence of p., and find that numerical results are
consistent with the theoretical results obtained by taking into account the breakdown
of the self-averaging property. For a > 0, we confirm the theoretical results by numerical
simulations. Furthermore, for a > 0, we numerically study the case that patterns are
subject to external noise and find that p. increases as the noise amplitude increases.
The structure of this paper is as follows. In §2, we analyze the SPEs and rewrite
them by introducing sublattices, and show the list of stable solutions for p < 3. In §3,
we characterize the CA and derive the conditions for the existence of the CA. In §4,
we study the stabilities of the relevant solutions mainly for p < 3 by calculating the
Hessian matrix. In §5, we show numerical results for the phase diagram in (a,T’) plane,
the temperature dependences of order parameters, the N dependence of p., and the
effects of noise input to patterns. §6 contains a summary and discussion of the results.
In Appendix A, we derive the expression of the free energy and the SPEs. We derive
all solutions of the SPEs for p < 3 in Appendix B. In Appendix C, we describe the
properties of the function u(z) which appears in the SPEs. In Appendix D, we give
proofs of relations among variables related to sublattices. In Appendix E, for p = 3,
we derive the range of an order parameter which characterizes the CA, and relations
between order parameters for the CA. The stabilities of irrelevant solutions of the SPEs

for p < 3 are analyzed in Appendix F.
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2. Analysis of the saddle point equations
We study the XY model which consists of N XY spins X; = (cos ¢;,sin¢;), 1 <i <
N, where ¢; is the phase of the ith XY spin. The Hamiltonian H for the XY model is
given by
— Z Jij cos(p; — ¢;). (1)
i<j

The associative memory interaction is expressed as
J p
= ) e )
pn=1

We assume that pth memory pattern & takes +1 and that there exists the correlation
between the memory patterns, which is represented by (§/'¢Y) = ady; for pu # v and
(&/€}') = dij, where (---) denotes the average over {;'}. We assume 0 < a < 1. The

order parameter is defined by egs. (3) and (4)

N
1
RMR = NZf CoS ¢, (3)
XN
Fu = et @
The Hamiltonian is rewritten as follows:
JN & Jp
H = —-Z—Y R+°2 5
5 Z R (5)

R, = R+ (6)

2.1 Free energy and Saddle point equations
As is derived in Appendix A for N > 1, the free energy F = —l In Z is expressed

as eq. (7), where f = + and the Boltzmann constant is set to 1, kg = 1.
JN
F = TR2 - = Zln (2rIo(BIZS)), (7)
where

R = Xp: R, (8)
\&

= = \ Zf R,R)? Zf Ryur)?, (9)
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1 2w

L(z) = e 5% cos(ng)de. (10)

27 o
I,,(z) is the modified Bessel function of the first kind. The SPEs are obtained as

1 K&
Rup = B3 D ) u(x))& Run, (11)
j=1 v=1
1 K&
Ru = BJ5 D Y ulz)&€ Rur, (12)
j=1 v=1
_nRI=. — Li(x)
:L‘j_BJ‘—‘Ja U(l‘)— $Io(l’) (13)

The function u(x) has the following properties.
1
u(0) = =, lim u(z) =0,
2" rz—o0

u(z) >0, forx >0, u'(z) <0, for z > 0.

See Appendix C for details. Fig. 2 shows the graph of u(x).

Fig. 2. Function u(x)

We consider the case that the self-averaging property holds. That is,

N
=3l = lo(e) (14
j=1
where [-] means the average over {£!'}. Thus, we obtain
R = BJZP:CWRVR, (15)
1:1
Ry = BJY cuBunr. (16)
v=1
Here, we define
Cww = [U@J)fff;] = Cup- (17)
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Now, let us study whether the reflection symmetry in solutions of the SPEs (11) and
(12) exists or not. Suppose that order parameters ({R,r},{R.,s}) are solutions of the
SPEs. Let us consider the order parameters in which the signs of R, r and R, are
reversed, that is, we consider (Rig, -+, —Ruor, -+, Rprs Rir, -+, —Ryuor, -+, Rpr). We
define R}, p = —Ryu,r, &5° = =€, and for u # po, R,z = Rur and &' = & x; is
expressed as

p p

r; o= B QTR+ Q&R (18)

p=1 p=1
Then, we find that ({R),z}, {1, }) satisfy the SPEs (11) and (12) with £ replaced by
& Let 5? be the “mother” pattern which takes +1 with the probability % and produces
i, & The conditional probability P(£|¢) of £¥ given &7 is

70

14+ +a 1—+/a
PE)) = 2\f55;759 + QI%L,&?, (19)
(20)
Then, we obtain for u # v
P(E&) = Y PEIEPEIEPE)
€0
1+4+a 1—a
= T(ésj‘%;,z + 55;‘+§;,—2) + 1 5£§‘+£;,0- (21)
On the other hand, we obtain for ° and v # pu°
0 y 1+a 1—a
P(g/;ll ) Ij) - 4 (575/70+£/;72 + 5_574‘5,3’7_2) + —4_5*5/;0+5/;’,0. (22)

Therefore, we obtain (£'°¢")) = —(£}°¢}) = —a for pig # v. Thus, the average over {{'}
is different from that over {£} when a # 0. Thus, we conclude that
(Rig, -+, —Ruor, -+ s Rprs Rar, -+, —Ryo1, - -+, Rpr) do not satisfy the SPEs for a # 0.
However, if all of the signs of {R,z} and {R,;} are reversed, these are also the solution
of the SPEs.

Now, we introduce the sublattice A; (I = 1,---,2P) which is a set of 4. In Ay, &

takes the value 7;".

<§117§1277§5>:<7711777127777f)7 ZGAI
{nl'} are determined consecutively for p > 2 as follows. When p = 2, we define nj =

1,7} =1,n = 1,73 = —1. Starting from this, others are determined. We set ; = 1 for
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[=1,---,2°"1 We define A; 91 in which the following relations hold:

77;12;771 :—77#7 (l:1,-~- ’2p71 ) ,u:1,~-~ 7p>' (23>

In addition, when the number of patterns is p + 1, the values {n}’ (P H)} for p+ 1 are

determined so that nlz’(p H), coeny L+ have the following relationship with the values
{nf""} for p.

771%(p+1) = 77;14717(17)7 (l:17 ’2]) ) :u:27 7p+]') (24)

See Appendix D for details. For j € A;, Z; takes the same value. We denote it by =.

= is expressed as

p p
5= | O R+ (3 Runf)?, (25)
p=1 p=1

EH—ZP*l = I ’ (l = 17 27 e ’2p—1). (26>

Let P, be the probability that ! is equal to 7} for i = 1,2, -- - , N. By the self-averaging

property, the average over N neurons is expressed as
1 N 2P
2.9 = > Pglp). (27)
=1 =1

The SPEs (15), (16) and eq. (25) are rewritten as

P
R;LR = /BJZC,UJ/RVR7 (28>
v=1
P
Ru[ = ﬁt] Z CuuRula (29>
v=1
op
Cuv = szuml“?ﬁ' = Cup, (3())
=1
w = u(z), x =pLJE, (31)
5 = JR*+2> n'n(RurRur + RuRur). (32)
p<v
From eq. (32) we obtain
opr—1 or—1
EESY (32 + 23 n'ny (RurRur + RMR,,I)). (33)
=1 =1 u<v
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The following relation holds.

or—1

Z g =200
=1

See Appendix C for its proof. Therefore, eq. (33) is rewritten as follows:

op—1
B o= 2R
=1
12
2 L1 \2
r= 2p—12<5j)'

=1

From eqs. (28) and (29) we obtain

p
Ri = BJ Z C,ul/<R,uRRl/R + R;LIRVI)-

v=1

Thus, by using eq. (30), R? is expressed as

p p
Rz = Z BJ Z Cu(RurRur + RurRur)

pn=1 v=1

-
= —ZPlula:lQ.
B 5

2.2 The stable solutions of the SPEs and their stabilities

(34)

(35)

(36)

(37)

In this section, we list the stable solutions of the SPEs for p < 3. Detailed descrip-

tions including unstable solutions are given in Appendix B. The stabilities of stable

solutions are analyzed in §4 and those of unstable solutions are analyzed in Appendix

F.

2.2.1 Case of p =2

n n
=1 1 1
= 1 1
I = 1 -1
- 1 1

Table 1: The values of {n]'} in each sublattice for p = 2.

In Table 1, we show the values of {n}'} in each sublattice.

Memory pattern: M
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Ry > 0 and Ry = 0. This solution exists only when there is no correlation between

patterns. The solution is characterized as

1
Up = Uz B_J’ €T = T2, (38)
1
Cuy = Wé‘uy, (39)
T1
= = —. 4
Ro= Ri=3% (40)

)— % The solution exists for T' < TC(M)and is stable.

The critical temperature is TC(M
Continuous attractor: CA

This solution exists for a < 1, and is characterized as

B 1 B 1 A1
“S drep T Toap e
1 , TP+ a3
Cuu - ﬁ_Jéuua R = 2<6J)2 . (42)

The critical temperature is TN = % The CA is stable for T <T Y.
Symmetric mixed solution: S;. (Rig = Rar, Ri; = Rey = 0) This solution is

characterized as

- ! L0 (43)
ul - (1_'_&)/8J7u2_27x2_ 9
1 1—a 1 l1—a
e , 44
I I
R = —=Ry, R=——. 45
ST Y A N TN (45)
The solution exists for T <TC(SI): %. The stability condition is
1—a)J
% <T < T8, (46)

Thus, this solution is unstable for a = 0.
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2.2.2 Case of p=3

n uh i
I=1 1 1 1
=2 1 1 1
=3 1 1 -1
I = 1 1 1
I = 1 1 1
1=6 1 1 1
1=7 1 1 1
1=8 1 1 -1

Table 2: The values of {n]'} in each sublattice for p = 3.

In Table 2, we show the values of {n]'} in each sublattice for p = 3.
Memory pattern: M

This solution exists only when there is no correlation between patterns. It is character-

ized as
! (47)
u = U2 =U3=Uyg = —==,X1 =To2=T3=2T
1 2 3 4 37’ 1 2 3 45
1
1 = E,C1220132023:0, R:Rlzg}. (48)

This solution exists and is stable for T' <TC(M), where TC(M): %

Continuous attractor: CA

This solution exists for a < %, and is characterized as

1
T 0T 3a)3T (49)
1
Uy = U3 = Uy = m, (50)
To9 = T3 = X4, (51)
2 2
G = b Fan = Fan, R = %. (52)

We denote the critical point as TC(CA)

For example, in the case of a = 0.1, TC(CA):O.42. It is stable for T' < TC(CA).

, which is determined by the condition z; = 3z,.

Symmetric mixed solution: S, (R; = Ry = R3)
Rir = Ror = R3g holds, and this solution is characterized as

1

?7

Tog = T3 — XTyg —
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U = Uz = Uy. (54)
1 3 1 x
g7 = 31+ 30ule) + 71— a)u(), (55)
55014 3a) L 130w (wty)., (56
Cupp = —= — a)uy, Cpy = ——— a)u v),
L Bz] 1, Cu BJ 1 M
1 sl
Ri=-——=Ry=R;, R= : 57
1=35; = = f V357 (57)
The critical point is T8= % When a < %, this solution is stable for T, <

T <T®Y. When a > %, it is stable for T < T,
In Appendix B, we prove that for a # 0 when one or two of Rir, Rog and R3r have

different signs, they do not satisfy the SPEs.

3. Characteristics and conditions for the existence of continuous attractor
The CA is defined as a one-parameter family of solutions. The existence of the CA

depends on p, J, § and a.

3.1 Characteristics of the CA

The CA is characterized by Pjw; = constant for all [ and ¢, = BLJ(;“”' Let us prove
them.
(1) Pu; = constant.
From egs. (35) and (37), we obtain

or—1 or—1

d ol = 2°8J)  Puay. (58)
=1 =1

The sufficient condition for eq. (58) is
.T}l(l — QI’BJPlul) = 0.
The condition satisfying this equation is either of the following two equations.

= 0, (59)
1
P = 57 (60)

If eq. (60) holds for all of I, Pu; is determined only by g, J and p. Therefore,

Z1,- -+ ,xo—1 is determined only by 3,J,p and a. In this case, if there is one vari-

able that can change freely, it is the CA.

(2) = 2500

Now, let us assume that Pu; = constant for all [. Then, by using 21221 'y = 20716,
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we obtain
op
Cw = _PlUl Z nlunly = -Plul2p5uu-
1=1
Therefore, because Pu; = ﬁ, we derive
1
Coy = E(S‘W' (61)

On the contrary, if eq. (61) holds, the SPEs (28) and (29) are satisfied. xy,--- ,x, are
determined by eq. (60).

3.2 Conditions for the existence of the CA for a =0

The CA exists in arbitrary p(> 2). Let us prove this. Let us assume that only two R,,
are not zero. For example, we assume Rip # 0, Riy =0, Ry #0, R3 =---= R, = 0.
This is possible since there is no correlation between patterns. From eq. (60), since
P =1/2" uy = u(xy) = % Thus, the solution exists for u(0) > 5%] This implies
TN = Ju(0) = £

5.

3.3 Conditions for the existence of the CA for a >0

The condition on p for the existence of the CA is obtained by comparing the number
of conditions for the CA and the number of variables R,z and R,;. The number of
conditions is the number of equations on Z;, and is 2P~! since =, 01 = Z; holds.
Because of the rotational symmetry, R;; = 0 can be assumed. The CA is assumed to
be a one-parameter family. Therefore, the number of dependent variables that should
be decided is 2(p — 1). Thus, 2°~! = 2(p — 1) is the condition on p for the existence of
the CA. Only p = 2 and 3 satisfy this condition. Thus, the CA does not exist for p > 3.

The critical point T4 of the solution for p = 2 is obtained from eq. (41) for u(zs).
1 1
- <
(1—a)pJ — 2
Therefore, the critical point is T = % In the case of p = 3, ©; < 35 is necessary.

When x; = 35, the CA coincides with the symmetric mixed solution S,. See Appendices
D and E for details. When the CA disappears, the symmetric mixed solution S4 becomes
stable.

Now, for p = 3, we derive the condition on the correlation a for the existence of the

CA. When T ~ 0, the function u; becomes very small by egs. (49) and (50), and z;
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becomes very large. The function u(z) can be approximated for x > 1 as follows:

See Appendix C. Since u; = m and uy = (1_%, we obtain

(1+3a)J
A
(1—a)J
e

12

X1

To ==

Substituting them into the condition for the existence of the CA, i.e., x1 < 3z, we

obtain

a <

Wl =

In Fig. 3, we show the phase diagram in (a,T’) plane for p = 2 and 3. The theoretical

results agree with the numerical results by MCMCs quite well.

-
o
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Fig. 3. Phase diagram of the CA and symmetric mixed solutions S; for p = 2 and Sy for p = 3 in
(a,T) plane. Curves: theoretical results. Solid curve: TC(CA), dotted curves: TS and T5Y. Symbols:
results by MCMCs with N = 20000. Circle: CA, square: S1, Sy, star: Para. Left: p = 2, right : p = 3.

4. Stabilities of relevant solutions for p < 3

In this section, we study the stabilities of relevant solutions of the SPEs. Those for

unstable solutions are given in Appendix F. We calculate the Hessian of the free energy
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F'. The components of the Hessian matrix H are written as follows:

. 62F 3 z v 2
H(MR,VR) = m =JN (5;,“,/ - B‘]CMV - (6‘]) lzl Plulenlunl (CIR) )7 (62)
02 F 2 .,
82P1 3 a n_v
Hurvr m = JN<—(5J) lz; P Xymy ClRClI)a (64)
where

p p
QR = Z Ranlwa CH = Z Rwlnfa
w=1 w=1

x = PJE =BIV(Gr)?+ ((1)?, X = u'(77)

zu(zy)

These are general expressions of the Hessian matrix.

4.1 Case of p=2
Memory pattern

The memory pattern exists only when a = 0. Since Ry; = 0, we obtain
RQR = RQ[ - O
The values of x;, u; and R for the memory pattern are

1 T
—, R=-1.
BJ’ BJ

The solution exists for u; < % Thus, the critical point is M= % The values of (;r,

Ty = T2, U = Uz =

Gty Cup» Cuv, and Pjuy are given as

ClR = C2R = R1R7 Cl[ = C2I = 07

1 1
CW,:O (M?’éy)a P =

=By w3
Therefore, the components of the Hessian matrix H are
Himn = —5IN(BIP(Gr)* (X + Xa)
= —JN(BJ)*(C1r)* X1 = Homer = A,
Huror = 0, (0#Vv), Hupor =Hun1 =0, (n,v=12).
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We define the arrangement of the matrix element as 1R, 2R, 1] and 21.
1R 2R 11 2I

1IR{ A O 0 O

2Rl 0 A 0 O
Y =

17 0 0 0 O

21 0 0 0 O

Four eigenvalues of this matrix are
A=0 (2fold), A (2 fold).

A is expressed as
A = —JN(BJ)Z(QR)QXL

Since J,N > 0, X; < 0, this is positive. Thus, the Hessian matrix H at the memory
pattern has zero (2 fold) and positive (2 fold) eigenvalues. Thus, it is stable.

The continuous attractor

By using the relations Pu; = ﬁ and ¢, = BJ(SW for the CA, the components of the
Hessian matrix are given by
0°F -—
—— = —JN(BJ)? X 65
O°F 2
——— = —JN(BJ)? X'y 2 66
IR 0T, (BJ) o Z iy (Gr)”,s (66)
O*F -
——— = —JN(BJ)? X 67
IRl (8J) Z im0y GrGu- (67)
Case of a =0
We investigate the stability of the CA for a = 0. For [ = 1,--- , p, we have the following
relations.
P ! Lo, fant > 0, X, = g
U =——= U =— x; = constan = .
U 25’ l 37 l Y zru(z)
All quantities do not depend on . We define A as A = —5 N( 5772 ——3 H. Therefore, we obtain
1 O*F 1
Apor = — = X it (Gr)?, 68
Hit JN(BJ)? OR,z0R,n 2071 ; i (n) (©8)
1
AMRVI 2p71X ZZ n#anClRCH) (69)
=1
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op—1

2771 m (Gu)?,

where X = X;. For p > 2, we assume Rig # 0, Ri; =0, Ry #0, Ry =

A,u[l/[

(70)

=R, =0

without loss of generality. As is shown in Appendix B, for « = 0 and p = 2, when we

assume Ry; # 0, Rog = 0 follows. Then, we have

Rl - |R1R| ) R2 - |R21|7
p p
Gr = Z Rupnl' = Ragnp . CGr= Z Ry = Ropny.

We substitute these into egs. (68)-(70). The following equation is verified.

2p—1 _

w, v 1,2 _ 2p ! (,u,l/) = (172) or (271>7
S onfuinin =
—1 0 other cases.

See Appendix C for the proof. First of all, we consider when (u,v) = (1,2) or

Because Y17, (fn)? = 27,

2r—1
1 14
Npor = ﬁXRlRRZI ZZ ni'nynin = XRigRoy.
=1
When (1, 1) # (1,2), (2,1),
1 Fi
Appor = op—1 Z i/ nin; = 0.
=1
Thus, each component of the matrix A is expressed as follows:
2p—1
AMRVR Z nl nl XR2 ;u/a
1 E.
AMRVI FXRlRRQI Z nlunlynllle
. XRIRR2I (:uv V) = (172) or (271)7
0 other cases,
M = XR36u.

16/62
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The matrix A is

1R 11 2R 21

IR [ Mimir Mirir Mirer Airor R} 0 0 RigrRap
A~ U | Aing Minr Mipr Mg _x 0 R3 RirRap 0
2R Mopir Morir Momor Mopar 0 RirRar R? 0
21 \ Aonir Aonir Aorar Aopor RirRar 0 0 R3
We solve the eigenvalue problem of this matrix as
XR?— ) 0 0 X RigRoy
A—\E| — 0 XR2— X XRipRy 0
0 XRirRoyr XR?— )\ 0
XRigRor 0 0 XR2— )\

= MNPA-XR)?*=0.
Eigenvalues are obtained as
M =0 (2fold), X=XR*<0 (2fold).

Thus, eigenvalues of the Hessian matrix H are zero and —JN(38J)2X R? > 0. Therefore,
the CA is stable. The free energy of the CA is the shape of a valley which is composed
of the route from a certain memory pattern to another memory pattern. The eigenvalue
with two fold degeneracy A\; = 0 reflects the existence of the CA and the rotational
symmetry.

Case of a > 0

If there is a correlation between patterns, any overlap R, has a nonzero value. Therefore,
we assume Rig > 0, Ry =0 and Ry # 0 without loss of generality. Since Ri; = 0, we

obtain
Cir = Rip + Rar, Cr = Rigp — Rar,
Cir = Rir + Rar = Ry, Cor = Rip — Ryr = —Ryy.

The Hessian matrix H is obtained from eqs. (65)-(67). A is defined as
2

AN=—————%H.
INGIE
We obtain
Mrr = Xl(ClR)Q + XQ(CQR)2 = Nopor = A <0,
Mpor = Xl(ClR)Q - XQ(CQR)2 = Nomr = B,
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M = Xi(Gn)* + Xo(Gor)® = Moo = C <0,
Mpr = Xl(C11)2 - X2(C21)2 =Nonnr = D,
Mipir = XiGrGr + XoCrCor = Aapar = G,
Mipar = XiGrGr — XoGrCr = Aopir = K.

The matrix A is
1R 11 2R 2I

IR{ A G B K
7l ¢ C K D
2Rl B K A G
2I\ K D G C

A_:

By the rotational symmetry, we can omit the row and column which contain R;;. We

call this matrix A again, and solve the eigenvalue problem of A.
A=) B K
A= A\E| = B A=A G =0,
K G C—-A
N —(2A+0)N + (2AC+ A% - B* - G? — KH))\
— (A2C+2BGK — AK? — B*C — A’G) = 0.
The constant term becomes 0 and thus there is the eigenvalue 0. Thus, we obtain
M~ (2A+O)N+2AC+ A* - B> - G* - K*=0.

By defining g = —(24+C) and h = 2AC+ A?— B> - G?— K?, we obtain A>+g\+h = 0.

The solutions are

1
)\i = §<—g + \/g2 — 4h,)

g% and h are calculated as
P o= (X02AGR () Xaf2Gr) + (r)))
h = 2X1X2<(C1R)2(C21)2 + (G)*(Gr)* + Q(CIR)2<C2R)2)-

Since A < 0 and C < 0, g > 0 follows. In addition, since X; < 0, h > 0 follows. Next

we show that g — 4h is positive.

g* —4h = X{{2(Gr)? + (Cu)*Y + X3{2(Gr)* + (Gn)*Y
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+2X10{(Gn)*(Cr)? = 2(Gr)* (Gn)? = 2(G1)*(Gr)” — 4(CGRr)* (Gr)*}-
By defining 21, 2, and 23 as
a = {2(Gr)*+ (Gn)*P,
2= (Q)*(Gn)® = 2(GR)* (G = 2(Gn)(Gr)* — 4UGR)* (Gr)
= {2(Gr)* + (Gn)*}

g*—4h is expressed as g2 —4h = 2, X7 +22, X, X1 +23X3. Since z; > 0, if the discriminant

d of this quadratic formula for X is negative, g — 4h > 0 follows.
d = (2X5)* — 2123X2 = X2(22 — 2123).
We put z; = 2(Cir)% + (Gir)? and Z3 = 2(Car)? + (Cor)?, and obtain
22— 223 = (29+ 515) (25 — 515).
Each factor is calculated as
4 a2z = 2(Gr)(Cr)? >0,
=27 = —4(Gr)H(Cu)® — 4(G)*(Gar)? — 8(Gir)* (Gr)® < 0.

Thus, the discriminant is negative and we obtain g?—4h > 0. Therefore, two eigenvalues
A+ of A are negative. Thus, the Hessian matrix H at the CA has zero (2 fold) and two
positive eigenvalues. This implies that the free energy of the CA is the shape of a valley,
and the CA is stable.

Symmetric mixed solution: S;

We assume R;; = 0 from the rotational symmetry. Thus, we obtain
Rig = Rop , Ror = 0.

The values of u;, Rjr, R;y and R are

1 1 T xq
U (1_'_&)/8J7 Uz 27 1R QBJ 2R \/§6J
Thus, the critical point is TC(SI): % The values of ¢, and ¢, are
1 1—a 1 1—a
CMM_QB—J+ 4 CMV_QB—J_ 1 (n#v).

Thus, we obtain

O — By =
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Putting v = JN (3 — 1524J), the Hessian matrix H is expressed as

1R 2R 11 21

where A = v — 2JN(BJ)?X, R?p. Tts determinant is
H—AE| = (24 —27—X\)(2y — N)?(=N).
Eigenvalues of this matrix are the following.
A=0,2(A—7), 2y (2 fold).
Let us study the signs of eigenvalues. We have
20A—7v) = —2JN(BJ)’X,Rip.

Since X; < 0, this is positive. Thus, if v is positive, the solution is stable. The condition
is

(1—a)J

—

Therefore, the symmetric mixed solution S; is stable for 7" >

T >

(1—a)J
—

4.2 p=3
Memory pattern: M
Firstly, we study the case of p = 3. The memory pattern exists only when a = 0. We

assume R;; = 0 from the rotational symmetry. Thus, we obtain
Ror = Ra; = R3r = Rz = 0.

The values of u; and R are

¥ =Ty = T3 = 1y, (72)
Uy = Up = %, (73)
R= % (74)
By eq. (73), the critical point is TM= % The values of ¢, ¢, and Pju; are
Cuuzﬁ_ljv cw =0, (n#v), Plul:%
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Then, we have

O — BJcyu, =0, for any p, v.

u' (1)

In this solution, X; = ) = X;. Therefore, the Hessian matrix H is expressed as

1R 2R 3R 1I 2I 3I

IR{A 0 0
2R O
3R] O
7] 0
21 O
31 \ O

o O o o o O
o O O o o o

o O O o o O

A 0
0 A
0 O
0 O
0 0

where A = —JN(BJ)?R?X,. Eigenvalues of this matrix are

A=A (3 fold), 0 (3 fold)

Since J, N > 0, X; < 0, we obtain
A= —JN(BJ)*R:X, > 0.

Thus, the Hessian matrix H at the memory pattern has zero (3 fold) and three degen-
erate positive eigenvalues. Thus, the memory pattern is stable.
Now, let us consider the case of p > 3. In this case, since Rig # 0 and others are

zero, we have
H;,LRVR = Aéuu ) (75)
,H;,LRVI = ,H;,LIVI = 07 (ﬂ) V= ]-7 e 7p) (76)

Thus, H has p fold zero eigenvalues and p degenerate positive eigenvalues, A. This is
because memory pattern is the end point of p — 1 different CAs and thus it has p — 1
zero eigenvalues and another zero eigenvalue due to the rotational symmetry. Therefore,
the memory pattern is stable for any p when a = 0.

Continuous attractor: CA

Caseofa=0
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Similarly to the case of p = 2, the matrix A = —W for p > 2 is given as
R? 0 0 RigRyy 0 0 0 0
0 R2 RipRos 0 0 0 0 0
0 RigRos R? 0 0 0 0 0
RipRor 0 0 R2 0 0 0 0
H=X 0 0 0 0 R? 0 0 0
0 0 0 0 0 R2 0 0
. : : : ) ) 00
R 0
0 0 0 0 o 0 0 0 R
We solve the eigenvalue problem of this matrix as
IA—=AE| = M0\ - XR)*(XR; - NP 23XRI—-\P2=0.

Eigenvalues of the Hessian matrix are zero (2 fold), —JN(BJ)2XR?* > 0 (2 fold),
—JN(BJ)’XR? >0 (p—2 fold) and —JN(BJ)>XR3 > 0 (p — 2 fold). Therefore, the
free energy of the CA is the shape of a valley, and the CA is stable.

Case of a > 0

Since the CA does not exist for p > 3, we consider the case of p = 3. It is proved that

Rir = Ror = R3g > 0 can be assumed (see Appendix E). Now, we define o/, &' and ¢

as
a' = RigRor+ RiiRyy,
V' = RigRsr+ RiRs,
d = RopRsr+ RoRsy.
In Appendix B, we prove
=2 _ =2
a/ _ —1 —2
8
Then, from Rjp = Rer = R3g and R?; = d/, we obtain
=2 _ =2
Ry = = 3 2 = Rop = Ryp,
1
By = S{-(Rin+ 2R — R+ \/(Rip + 2R3y — B2)? = 4(a’ — R3p)?
9=2 — =2
= —(Rip+2Rp — RY) = B =3d' = ———,
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1
R%I = 5{_<R%R + QRSR - RZ) - \/(R%R + 2R§R - R2)2 - 4(a’ - R%R)z =0.

In Appendix E, Z; < 3=, is derived in order that R3, > 0 holds. Furthermore, by

Ry; = 0, the values of (; and (;; are
Cir = 3Rir, CGr = Gr = Rigr, (Gr= —Rig,
Cir = Gor = Rar, (31 = Car = — Ry

For the CA, Xy, = X3 = X, follows from us = u3 = wuy. The Hessian matrix H is
obtained by egs. (65)-(67). We define A as

4
AN=———-H.
JN(BJ)?
Components of A are
Mrir = 3(3Xi+Xo)Rip = Aopor = Aspsp = A,
Mrer = (9X1 — Xo)Rip = Morig

= AMirsr = MAsrir = Morsr = Asper = B,
Mnr = (X1+3X2)R3; = Aopar = Ay = C,
Mpr = (X1—Xo)R3 = Mopiy

= Mimr = Asnr = Aoz = Asppr = D,
Mrir = (3Xy+ Xo)RipRor = Aoror = Asrsr
= Airor = Mopir = Aopsr = Aspor =

Mrsr = 3(Xi— Xo)RigRor = Aspir = G. (77)

We rewrite those components as

= 3(3X, + Xo)Rip,
9X, — X,
= (9X1 - Xo)Rip= -~ A=794,
= (X1 +3X,)R5;,
X1 — Xy
X, - X9)R = ———C=uwC

= (3X1+ Xo)RigRoy,

Q & T QO W
I

3(X1—X2)
= 3(X{—X9)RipRyy = ——FF =¢F
( 1 2) 1R{t2r 3X, + X, €L,
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where

9X; — Xo
3(3X1 + Xy)’

”)/:

X1 — X
Ww=—
X +3Xy’

3(X1 — X2)
33X, + X,

Due to the rotational symmetry, the row and column which contain R;; can be omitted.

We call this matrix A again.

1R
2R
3R
21
31

A_:

1R

vyA A YA E FE

vyA vyA A E FE
E E FE C wC
ek E E wC C

31
eF

2R 3R

A ~A ~vA FE

We solve the eigenvalue problem of the reduced matrix.

A=) ~A
vyA A — )

A= XI| = ~vA vA
E E

el E

vA E )
YA E E
A=\ E E
E C—-X\ wC
E wC  C—=A

= AL - y) A x

0 2 A(1+27) — A} E(1—¢) E(5+ )
—2{A(1—7)— A} 2{A(1+~vy) — A} 0 4FE
2B(e — 1) AE 0 2{C(1 +w) — A}
2B (e — 1) 0 2{—C(1 — w) + A} 0
We put r = §—i In addition, C' is expressed by A and FE as
3(X; + 3X,)E?
(3X; + X5)A
Therefore, |A — M| becomes
A= M| = —27*—-A(l—7)+ A} x
0 2(32@:)/1 - /\> vl RE
—2(giA-0) 2(35ma- ) 0 AE
25 g AE 0 2(SE —2)
270 py 0 —2(@Es -2 0
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2
= —27H Al —7)+ A} x %E‘* X
0 (27 + 1) — 4rvA 1 9+r
1—ovX 2(9+7)—4rvA 0 23+ ) (78)
3 6(3+1) 0 6(1+7r)—2rzA
3 0 —6 + 2\ 0

From the coefficient of the determinant, the first eigenvalue is obtained as
M o= A(l —7v) =4X,Ri, < 0.

It is proved that the determinant is equal to 0 when A = 0 is substituted. Thus, the
fourth order polynomial of A, eq. (78), has a factor A. Thus, by dividing the polynomial

by 2\, we obtain the following cubic equation.
4?0222\ —  rvz(120 + 5rz + 272 + 361v)\?
+  (27r2% 4 240rvz + r22% + 72r*0® + T2rv° + 24r%02)\
—432rv — 1201z = 0. (79)

We calculate v and z as
3(3+7r) 2 (B+1m)A 12

A (E-2)X, T wE? (92X,
Dividing eq. (79) by 4r?v?22, we obtain

FO) =X+ a\? + )+ ap =0,

where
1f - -
w = —{(E-F)ETX +5X) + 20953 - Z)(X, +3%,) |
1 — — —_ -
aq = 1—6{X2<:% — :3)2<27X1 —+ X2) + 2X2<9~:§ - :%>2<X1 + X2)
+AX(E2 - )93 - 210X, + X)),
1 Co movam? e | o
a = —IXX3(E - 295 - EH(F + =),

Since the eigenvalues of a real symmetric matrix are real numbers, solutions of f(A) =0
should be real numbers. This means that f(A) = 0 has three real solutions. Furthermore,
f'(X\) = 0 should have two real solutions. Now, we show that the function f(A) has three
negative real solutions.

Since relations X; < 0, Z; > =5 and =1 < 3Z,, the coefficients ag, a1, as are all positive.

Let £ and n (£ < n) be two real solutions of f'(A) = 0. Conditions that f(A) = 0 has
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three negative real solutions are the following.

1. f(0)>0,2.7<0

We investigate these conditions.
1. Since f(0) = ag and ag > 0, f(0) > 0 follows.
2. The first derivative of f(\) becomes
') =3N+2aA+a; =0 (80)

Since it has two real solutions, a3 — 3a; > 0 follows. Then, solutions of eq. (80), & and

7, are

o Tw-Vd-3u _ —etvd-3a
B 3 o 3 '

Since a; > 0 and ay > 0, n < 0 follows.

Therefore, A has one zero and four negative eigenvalues. Thus, the Hessian matrix
in the CA has zero (2 fold) and four positive eigenvalues. Therefore, this implies that
the free energy of the CA is the shape of a valley, and the CA is stable.

Symmetric mixed solution: S,

We consider the case of p = 3. We assume R;; = 0 from the rotational symmetry. In
addition, we assume Ro; = R3; = 0. Then, we obtain Ry = Ry = Rs3. In Appendix
B, it is proved that Rig = Rsr = R3pr is a solution but there is no solution in which

one or more of the signs of the Rig, Rogp and Rs3g are reversed. Below, we assume

Rir = Rop = R3g > 0. The values of u;, Rjr, R;; and R are

1 4
Uy = u3:u4:1_a(w—3(1—|—3a)u1),
x T2 x
Rp = —L " _ Rop=Ren R= .
1R 36J BJ 2R 3R \/g/BJ

x1 is determined by eq. (190). See Appendix B for details.

The values of ¢, and c,, are

3 1
Cppp = 57 —2(1+3a)ur, ¢ = _B_J+<1+3a)u1’ (1 # v).

Then, we obtain
—24+2(1 4+ 3a)8 T, (4 =),
L= (143a)8Ju,  (n#v).

In the symmetric mixed solution Sy, we have us = us = uyg, 1 = 3x9 = 313 = 3x4. The

O — By =
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components of the Hessian matrix are calculated as

1+ 3au 1 — /
Hirir = 2JN(—1—|—(1+3a)6Ju1 — (BJ)*R{ + au(x1)9+ au(x2)3})
8 T 8 i)
= Horer = A,
1 ! 1 —au
Hirer = JN<1_(1+30’)6JU1—2(6J)3R%{ +3au(3:1)9_ au($2)3})
8 T 8 i)

= Hirsr = Horsr = B,
Hinr = JN<—2 +2(1+ 3a)ﬁju1> = Horor = Hsrzr = C,

Hirer = JN<1 — (14 361)5JU1> = Himsr = Hosr = D,

op ,
u'(z
Hirir = JN(—(ﬁJ)?’ZPl (l)n{‘ni“CzR@) =0
=1

x
= Haror = Harar = Hirer = Hirsr = Harar-
Thus, H is expressed as

IR 2R 3R 11 2I 31

IR{A B B 0 0 0
2Rl B A B 0 0 O
2y 3Rl B B A 0 0 O
7y o o 0 ¢ D D
20 0 O O D C D
3\ 0 O O D D C

The characteristic equation of an n x n matrix with the diagonal components A and

the others B is
{A=X+(n—-1D)B}A-X-B)"' = 0.
Thus, we obtain the six eigenvalues of H as
A=A+2B, A— B (2fold), C+2D, C — D (2 fold).

Let us study the signs of these eigenvalues.

(1)

X X2

AtoB — 2JN(—1+(1+3a)5Ju1—%(ﬁj)?’Rf{(lJr?)a)

+1— (1 +3a)8Juy — §(5J)3R§{(1 PPACI P u’(x2)3}>

o -t

Since SN > 0, 2; > 0,0 < a < 1 and the function u; decreases monotonically, i.e.,
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u; < 0, we obtain A+ 2B > 0. We find

C+2D = 2JN{-1+(1+3a)BJu;+1— (1+3a)BJu;} =0.
A— B =C— D is proved as
A-B = JN<—2 +2(1+ 3a)BJus — g(gj)ng{(l I 3a)ulff1)9 (- a)ulff2)3}
1 2
~1+ (14 3a)8Juy + %(BJ)ng{(l + 3a) “/;“)9 +(1- a)—UI(xe)?)})
1 2

- 3JN(—1 +(1+ 3a)BJu1>
= C-D.
Thus, the sign of A — B determines the stability of S4. That is, if this is positive, the
solution is stable. The condition is
-1+ (1+3a)fJu; > 0.

We define ¢(T) = u(z1(T)) — y(T), and y(T') = ﬁ Then, the above condition is

equivalent to

g(T) > 0. (81)
The critical point for Sy is T8 = % Thus, we obtain
1+ 2a 1
TNy = 122 o2
YY) = 50530 <3

Since 1 ( TC(S4)):O, we obtain wu(z( TC(S“)):l/Q. Therefore, we obtain g( TC(S4)) > 0.
x1(T) is determined by the following equation, (eq. (55)).

7 = 4(1 + 3a)u(x (1)) + 4(1 a)u( 3 ). (82)
The derivative x(T") is calculated as
12

{91+ Ba)u (21 (1)) + (1 — a)u' (22}
Since v’ < 0, we obtain x}(T") < 0. The derivative ¢'(T') is
g(T) = u'(@(1)2\(T) =y (T)
12 1
u/(zl(T)) - 1+3 J
{9(1 4 3a) + (1 — a) sty 1/ (1+ 3a)
Let us consider the limit 7" — 0. As T" — 0, (L.H.S. of eq. (82)) — 0, and this implies
u(z1(T)) — 0 as T'— 0. Thus, g(+0) = 0. Since we have z1(7) > 1 when T" ~ 0, we
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obtain u(z) ~ 1. The derivative u/(z) is estimated for z > 1 as

1
! ~Y [
u'(z) =~ ot

Thus, we obtain for T" ~ 0

- y N 12 N 2
u'(z1(T)) 2\ (T) £9(1+ 3a) + (1 — a)miET)}J 3(14+a)J

5)?

—

Therefore, when T" — 0, we have

ol 2 1
I = AT T U580

3a—1
T 31+ a)(l+3a)] (83)

(a) Case of a < 3

In this case, from eq. (83) ¢’(4+0) < 0 follows. Since g(+0) = 0, we obtain ¢g(T") < 0 for
0 < T < 1. Since g(TC(S4)) > 0, there is T which satisfies g(7") = 0 in (0, TC(S“)). We put
this temperature as 7. That is, u(z(T)) = (H%)J at T, and this is nothing but the
equation for u; of the CA. See eq. (49). In addition, for the symmetric mixed solution

S4, from egs. (53), (54), (55), we obtain

oy = — (4T 3(1 + 3a) ) (84)
Uy = U3 = Uy — 1—a\7J a)uy |.
Substituting 7 = T in this eq. (84), we have
. T
T) = ———. 85

This is the equation to be satisfied for us = ug = ug of the CA, eq. (50). Moreover,
for Sy, we have the condition x; = 3x,. Thus, T satisfies the conditions for the critical
temperature TNof the CA. Since T\“Vis unique, we obtain 7 = TN, Thus, we
obtain ¢(7T') < 0 for T <T{and g(T) > 0 for T ST Therefore, Sy is stable
for TC(CA)< T < TC(S“). Furthermore, we find that S; and the CA do not coexist. Sy is
stabilized when the CA ceases to exist.

(b) Case of a > 3

In this case, since ¢’(+0) > 0 and g(+0) = 0, we obtain ¢g(7) > 0 for 0 < T < 1. As
is discussed in the above case, if g(T') = 0, this temperature is the critical temperature
of the CA. However, for a > %, the CA does not exist. Therefore, g(T') # 0 for 0 <
T <759 Since g(TC(S“)) >0, g > 0 holds for T' < TS5 Thus, the solution S, is always
stable as long as it exists.

In Fig. 4, we show the graph of the functions u(z1(7")) and y(7') in case (a).
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Fig. 4. Functions u(z1(T)) and y(T)

5. Numerical results

We perform MCMCs. We set J = 1 in all simulations.

5.1 Phase diagram in (a,T) plane

In Fig. 3, we displayed the phase diagram in (a,T") plane. We performed MCMCs
with N = 20000. The numerical method to obtain stationary states is as follows. As an
initial condition, we take &', and add a perturbation —h Z;VZI cos(¢; — ¢;) with h =
0.005 to the Hamiltonian H, eq. (1). Here, ¢/ is defined by &' = e for p=1,2,---,p.
After the system settles to a stationary state, we identify the state as follows.
Para: |R; — Ry| < 0.02, |R; — Rs| < 0.02, and Ry < 0.05.
Sa: |R1 — Ry] < 0.02, |Ry — R3] < 0.02, and R; > 0.05.
CA : Ry is greater than R, by more than 0.02. In order to confirm that the final
state obtained numerically is really the CA state, we change the perturbation to a new
perturbation —h Zjvzl cos(¢; — ¢7) with h = 0.005, and add it to the final state, and
check that the new final state satisfies Ry — R; > 0.02.

As seen from 3, the theoretical and numerical results agree quite well.

5.2 Temperature dependences of order parameters

First of all, we show theoretical and numerical results of the temperature dependence
of the order parameter R in Fig. 5 for a = 0, and in Fig. 6 for ¢ = 0.1. In numerical
simulations, N is set to 10, and the total Monte Carlo step is 10*. We took the average
during the last 5000 steps. Furthermore, we took the sample average over 50 samples.
We display the average and the standard deviation for R, but the latter is too small to

realize. Theoretical and numerical results agree quite well.
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simulation results with error bars. (a) p =2, (b) p = 3.

14+
12+
1 \
0.8 \\\
06
04
02F
0 * XX % K K X K K X X X X *
0 02 04 06 08 1 12 14
T
Fig. 5.
()
141

0.8 r

0.6

0.4 r

021

X X X X %

X X K K X % % ¥ %

02 04 06 08 1
T

12 14

06 _08 1
T

(b)

Temperature dependences of R for a = 0. Solid curve: theoretical results of the CA. Symbols:
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Fig. 6. Temperature dependences of R for a = 0.1. Curves: theoretical results. Solid curve: CA.

Symbols: simulation results with error bars. (a) p = 2. Dotted curve: Sy. (b) p = 3. Dotted curve: Sy.

5.8  Mazimum number of patterns for which the CA exists

Next, we study the maximum number of patterns p,. for which the CA exists. The-
oretically, as long as the self-averaging property holds, p. can take any value for a = 0,
Whereaspc:3for0<a<%andpc:Qfora>é.

We perform MCMCs for N = 4000 and 8000 and 7" = 0.1. We draw R, from 0
to 20000 mcs at every 100 mcs. We set the initial configuration as the CA in order

to reduce the time to reach the CA when it exists. We used the following criterion
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to judge whether the resultant solution is the CA. From 10* to 20000 mcs, at every
mes we selected the largest and second largest values of {R,}, say, R'™' and R*". We
defined AR = R™ — R? and calculated the standard deviation of AR, 0. We took
10 samples, and obtained 10 ors. We selected the largest one among ogs, say, oz, If
o exceeds some value, 0*, we judged that the CA exists. Empirically, o* = 0.1 gave

reasonable results.

Caseof a =0

We show numerical results in Fig. 7 for N = 8000. It seems that the CA exists until

p = 36. Let us study the condition for the existence of the CA for finite N. In finite size

(a) (b)

()

Ru

Fig. 7. Time series of R;s. a =0, N = 8000. (a) p

systems, in order that the self-averaging property holds, 27 < N should be satisfied.
Thus, the critical p,. for the number of spins N is estimated by 2P¢ ~ N. Thus, p. ~
5 In N. When N = 4000 and 8000, 5 In N ~ 12 and 13, respectively. These estimates
are consistent with the numerical results of p. ~ 20 and 30, respectively.

Case of a > 0

We perform MCMCs for a = 0.1. Numerical results are shown in Fig. 8 for N = 8000.
We note that the CA exists only for p = 2 and 3 as the theory predicts.

5.4 Addition of the noise to patterns

When a > 0, we theoretically and numerically found that the CA exists only for
p = 2 and 3, although when a = 0, p, can take any value as long as the self-averaging
property holds theoretically, and p. ~ In N numerically. In realistic situations, there
exists external noise. Therefore, we study the case that patterns are subject to external
noise when a > 0. It is expected that we can produce similar situations to the case of
a = 0 and make the CA reappear by the addition of noise because noise reduces the

correlation of patterns.

32/62



J. Phys. Soc. Jpn.

04

L L L L L L
0
0 5000 10000 15000 20000 0 5000 10000 15000 20000

t (mcs) t (mces)

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

t (mcs) t (mcs)

Fig. 8. Time series of Ry;s. a=0.1, N =8000 (a) p=2, (b) p=3, (¢c)p=4, (d) p=5.

Noise is introduced in such a way that the sign of each pattern & is reversed with
some probability, say A. Then, for 0 < A < 1, the substantial correlation a’ between any
two patterns becomes a’ = (1 —2X)%a for A < 3, and @’ = —(1 — 2\)2a for A > 1. Thus,
as A — %, a’ — 0. Fixing a = 0.1 and T = 0.1, we performed MCMCs for N = 8000
and for several values of p and A\. We set the initial configuration at random.

We took 10 samples, calculated the standard deviation o and determined the max-
imum of ogs, oF* as before. We show the time series of R, for the sample with 0% in

Figs. 9~11. We find that p. increases from 3 as A increases as is expected. For example,

Pe is 4, 4 and 6 for A = 0.2,0.25 and 0.3, respectively.
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Fig. 9. Time series of R,s. A =0.2, N =8000. (a) p=4, (b) p=75, (c) p=6.
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Fig. 10. Time series of Rys. A =0.25, N =8000. (a) p=4, (b) p=15, (c) p=6.
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6. Summary and discussion

We have analyzed the classical XY model with the associative memory type inter-
action for the case that N > 1 and the self-averaging property holds, with and without
the correlation a between any two patterns.

Firstly, we summarize the theoretical results. In Table 3, we list stable solutions.

a=0 ‘ a>0
p =2 | Continuous attractor (T < %) Continuous attractor (T' < %)
Memory pattern (T < %) Symmetric mixed solution S; (% <T< %)
p =3 | Continuous attractor (T’ < %) Continuous attractor (T' < TC(CA))
Memory pattern (T' < %) Symmetric mixed solution Sy (TC(CA)< T < %)

Table 3: Stable solutions for p = 2 and 3

For general p, we studied the condition for the existence of the CA. When a = 0,
the CA exists for any p and is stable as long as it exists. Among overlaps with memory
patterns {R,}, only two are nonzero. The critical temperature is TN = 2 for any p.
Since memory patterns are located at both ends of the CA, their stabilities are the same
as that of the CA. On the other hand, when a > 0, the CA exists only when p = 2 and
3. The reason for this is that the number of conditions becomes larger than the number
of independent variables for p > 4. The CA exists and is stable for T" <T. C(CA)(: %)
when p = 2. The symmetric mixed solution S; exists for T' < TC(S4)(: %“J) It is
unstable for 0 < T <TC(CA), and becomes stable when the CA disappears. That is,
the coexistence region of the CA and the symmetric mixed solution S; does not exist.
When p = 3, the CA exists and is stable below T{“which is determined by z1 = 3xs.
Pure memory pattern does not exist in a # 0, but its modified version appears at both
ends of the CA. The symmetric mixed solution Sy exists for 7" < T, 0(84)(: %J ). It is
unstable for 0 < T < TC(CA), and becomes stable when the CA disappears. That is, the
coexistence region of the CA and the symmetric mixed solution S; does not exist as in
the case p = 2. For p = 2 and 3 and both for a = 0 and a > 0, there exist several other
solutions but all of them are unstable.

Secondly, we summarize the numerical results. We performed MCMCs and calcu-
lated the critical number of patterns p. until which the CA exists. When a = 0, the CA
exists until p. ~ 20 and ~ 30 for N = 4000 and 8000, respectively. Theoretically, the

CA exists and is stable for any p as long as the self-averaging property holds. The reason
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for this disagreement is considered to be due to the breakdown of the self-averaging in
the finite size system. We estimated p. for finite N as p. ~ In N/In2 and we found
that this is consistent with numerical results. On the other hand, when a > 0, the CA
exists until p. = 3 for N = 8000. This result completely agreed with the theoretical
result. Furthermore, for a > 0, we added the external noise to components of patterns,
because we expected that the correlation between patterns is weakened by the addition
of noise to patterns. By MCMCs, we found that p. increases from 3 as the probability
A that each component is reversed increases as was expected.

Now, let us consider the meaning of the existence of the CA when the present
model is regarded as an associative memory model. In real brains, after a memory is
retrieved, it sometimes occurs that another memory is spontaneously retrieved without
any stimulation, or by an external stimulus, a memory which is related to the stimulus
is retrieved. That is, it seems that many memories in a real brain are “connected” in
a sense. Such kind of phenomena do not take place for models which have only point
attractors such as models composed of the Ising spins. On the other hand, in the present
model, the CA exists between any two embedded patterns. Thus, after a pattern & is
retrieved, another pattern can be retrieved spontaneously. And if an external stimulus
which lies on a path from the pattern £ to a pattern £ is added, the pattern & is
retrieved. That is, the CA is considered to be able to realize the feature mentioned
above that real brains have

Finally, we list several future problems. The first is the system size N dependence
of the critical number of patterns p. for a = 0. Extensive theoretical and numerical
studies are necessary. The second is the theoretical analysis of the effects of addition of
external noise for a > 0 in order to make the CA reappear. The third one is to extend
the present study to the case that patterns are divided into clusters in such a way that
patterns in any cluster are correlated but those in any two different clusters are not
correlated.
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7. Appendix A. Derivation of free energy and saddle point equations

The associative memory interaction is expressed as

J p
Ji = N > e (86)
pn=1
The order parameter is defined as follows:
| XN
_ p
R,uR - N ; §; cos ¢, (87)
| XN
Ru = + 2 £'sin ;. (88)
The Hamiltonian of the classical XY model is
H = _ZJini'Xj (89)
i<j
NJ & Jp
= 5 D AR + (R + 5 (90)
pn=1
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In order to analyze the XY model by the method of statistical mechanics, we in-
troduce the temperature T and calculate the partition function Z. We put kg = 1, so

b= % The partition function Z is expressed as

21
Z = /0 d@e%zzzl{(RuR)Q‘i’(RH])Q —8Jp (o1)

Y

where fozﬂ dd = fozﬂ dgy - - 0% d¢y. By the Hubbard-Stratonovich transformation, we

obtain
; 27 N/BJ 2p .
=¥ [ [yt dgaytean(y50) (92)
0 T

where we define

NBJ & - . -
H o= —=% ((%‘)2 + (yé‘)Q) +BIY (yé‘ D_§cosgityl Yy €sin ¢j)93>

=1 p=1 j=1 J=1

By performing integration with respect to ¢1,- -+, ¢n, We obtain
Z = C/dyi-~-dy€dy§-~-dy§eNfa
27 .
Nf = In / ddet! (94)
0
NBJ & = -
= SISO+ W+ Y e (), (95)
pn=1 Jj=1

=5 =, | Q&2+ Q&b (96)
p=1 p=l1

2p
where the constant C' = (\ / A;—ff) e~ is of the order 1, and Nf is of the order N.
Since we consider the case N > 1, we evaluate Z by the saddle point method.

7 mo CaNFWH W) W) W) ~E)) — NI

Here, (y*)*, (y*)* is the saddle point of f, and f* is the value of f at the saddle point.

Therefore, the free energy becomes

F = —%an ~ —%Nf*.
By using (94), we calculate gy@ =0 and gy@ =0 as
1 XN
(ve)" = (Bugr) = N Zfﬂcos di), (97)
i=1
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N
. 1
(v5)" = (Rur) = =N E_ /' (sin ¢;), (98)
J27 e AdD . . . .
where (A) = N . By performing the integration, we obtain
1 Il(ﬁJ:J)
Rup) = — § § =8 = () 99
N p —_
1 [1(ﬁJ.:j) 1
R - § — - I et ey (V) 100

Hereafter, we write (R, g) and (R,;) as R,z and R, for simplicity. Then, the SPEs are

L(BJZ;)
Run = NZZ A T Ren (101)
j=1 v=
L(BJIZE))
Ru = NZZ 2 TR, (102
j=1 v=

From eq. (95), the free energy is
NJ

F = —32 s Zln 21 ly(BJIZ;)),
where
P P
Ej = (Z nguR)Z + (Z nguI)Q-
p=1 p=1

Now, we define the average of all {{}'} as [A({g“})] By self-averaging property, we

obtain
| XN
= 3" Ade = [Ader].
7j=1
Then, the free energy and SPEs are rewritten as
NJ N
F = —R2 ~ 5 In(271s(BJZ;))],, (103)
RMR = 6‘] Z CuuRuRa ) (104)
p
Ry = BJY cuBur,, (105)
v=1
Cuv = [u<x]>£§l£;] ) <1O6>
where z; = BJZ; and u(z;) = %
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8. Appendix B. Derivation of all solutions of the SPEs for p < 3
8.1 Case of p=2
Because of the rotational symmetry, Ri; = 0 is assumed. There are three variable

Rir, Rop and Ry;. Without loss of generality, hereafter we assume Riz > 0. When
p = 2, probability P, is,

1+a

P o= B=—"

P = P—2 ; ¢

By definition, ¢, and =7 are
ci = 2Puy + 2Pyus = co9, (107)
cro = 2Puy — 2Pous = coq, (108)
27 = R®*+2RipRop, (109)
Z3 = R?—-2RigrRp. (110)
The SPEs are

Rip = pBJ(cuBRir + c12Rag), (111)
Rop = BJ(ciaRir + c11Rag), (112)
Ry = BJ(cuRar + ciaRop), (113)
Ry = BJ(criaRur + cinRop). (114)

I. Ry = 0. Memory pattern: M

From the above equations, =1 = = = R, fJci; = 1, and c¢15 = 0 follow. From these,
r1 = X9, and then u; = wuy follow. Thus, from c¢io = 0, P, = P, is derived. Thus,
The memory pattern exists only for a = 0. The critical temperature is obtained from
uy(0) = 5—{], that is, 7= 2. Therefore, egs. (38)-(40) in the main text follow.

II. Ry; # 0. Continuous attractor: CA

From eq. (114), ¢1; = ﬁ%} follows. Substituting this into eq. (112), because Ryr # 0,
c12 = 0 follows. Using these relations, from eqs. (107) and (108), we obtain Piu; = Pyus

and
= 1 115
U = ma ( )
1
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From egs. (109) and (110), we obtain
=2 422 = 2R
Therefore,

V2 V2pd

If a =0, uy = uy and x; = w5 follow. Thus, R = 55 = =1. From eq. (109), we get
RigrRsr = 0. Since R1g > 0, Rop = 0 follows. Therefore,

B VELHE _ Vaitag (117)

R*= R, + R;,.

Thus, one of R1r and Ry; can freely change, that is, this solution is a one-parameter
family. Therefore, it is a continuous solution. Next, we consider the case of a # 0. By

egs. (109) and (110), Rapg is expressed as

By the definition of R, Ry is
R%I = R* — R%R - R%R'

Thus, Ror and Ry are functions of Rig. By the conditions R% ; > 0, we obtain
) =+ =

5 < Rip < =5 (118)

Since this solution is a one-parameter family, it is a continuous solution. The critical
TN _ (-a)

temperature is determined by uy(0) = (1_% That is, 5

L Ry £ 0, Ryy =0
Because Rip and Rag # 0, from egs. (111) and (112), we obtain

{BJ(c11 + c12) —1}H{BJ(c11 —c12) =1} = 0.

We study the two cases A fJ(c11 + ¢12) = 1 and B BJ(¢11 — ¢12) = 1 separately.
ITI-A. Case of BJ(c11 + ¢12) =1

By adding eqs. (107) and (108), we obtain ¢;1 + ¢19 = 4Pyuy. Thus, we have

1
O e (119)

From this x; is determined. By using 8J(c11 + c12) = 1, eq. (111) becomes
cia(Rir — Rap) = 0.

We study the two cases A-1 ¢ = 0 and A-2 R1g = Rsp separately.
ITI-A-1. ¢ = 0. Continuous attractor: CA
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%. Therefore, we have two conditions ¢1; = % and

c12 = 0 as in case II. Thus, this is the continuous solution and egs. (115) and (116)

From eq. (111), we obtain ¢;; =

hold. In this case, we have
R? = Ri, + Rap. (120)

ITI-A-2. R = Ror. Symmetric mixed solution: S;
Since Ri; = Ry; = 0, we obtain

2L R= 2L
26J V28J
and eq. (44) follow. From eq. (119), the critical

R = Ry=

(121)

From these relations, o = 0, uy =

(S1)_ (+a)J
TS = Q]

1
27
temperature is
I11-B. 6J(011 - 012) =1.

From eqgs. (107) and (108), we obtain ¢j; — ¢19 = 4Pyuy. Thus, we have

W::ﬁfﬁﬁ (122)

By using 8J(c11 — c12) = 1, eq. (111) becomes
012<R1R + R2R) =0.
We study the two cases B-1 ¢;o = 0 and B-2 Rz = —Ryp separately.
ITI-B-1. ¢;3 = 0. Continuous attractor
Since ¢;; = BLJ follows, this is the CA.
ITI-B-2. R = —Ryr. Symmetric mixed solution: S,
Since Rip = —Ror and Ry = Ry = 0, we obtain
R* = R+ R;=2R}. (123)
From egs. (109) and (110), we obtain
=7 = R’-2R;=0, (124)
=5 = R’+2R;=2R%. (125)

Thus, 1 = 0 because =; = g—f] Thus, u; = 1/2. Therefore,

R = 387" (126)
€2

The critical point is TC(S2): W
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8.2 Case of p=3
Because of the rotational symmetry, Ry; = 0 is assumed. There are five variables,
Rig, Rogr, Ror, R3p and Rs;. Hereafter, we assume Rig > 0 without loss of generality.
When p = 3, probability B, is
1+ 3a

Pl = 8 :P57

]__
P, = Sa:P3:P4:P6:P7:P8.

By definition of ¢, and =, we obtain

c11 = 2Pyuy + 2Ps(ug + ug + uy) = Cog = 33, (128)
12 = 2Puy + 2P (ug — uz — uy) = cay, (129)
c13 = 2Puy + 2P (—ug — uz + ug) = cay, (130)
co3 = 2Puy 4+ 2Py (—ug + uz — uyg) = c39, (131)
E2 = R*+42d 2V +20, (132)
22 = R?+2d -2V —2¢, (133)
E2 = R*—2d -2V +2¢, (134)
Z2 = R*—2d +20 -2, (135)
where

a = RigrRor+ RiRyy, (136)
V' = RirRsr+ RiRsp, (137)
¢ = RypRsp+ RorRsy. (138)

The SPEs become
Rirp = BJ(cuBRir + ciaRor + c13R3g), (139)
Rop = BJ(ciaRir + cii1Ror + c23Rag), (140)
Rsg = BJ(cisRig + cosRar + c11R3r), (141)
Ry = 0, (142)
Ryr = BJ(ciiRar + ca3Rap), (143)
Ry = BJ(cosRor + ci1Rsp). (144)
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I. (R2, R3) = (0,0). Memory pattern: M

From the SPEs, ¢1; = ﬂ%], c12 = c13 = 0 follow. Since o/ =0 = =0, Z; =

(1]

—_—
— —
—

2 = 23 =
=4 = R, u1 = uy = uz = uy and c93 = 0 follow. Thus, it exists only for a = 0 and eqgs.
(47)-(48) are derived. The critical temperature is TM = Z.
II. (Ryy, Rsr) # (0,0)

From egs. (143) and (144), we obtain
(1= BJen)* — (=BJe)* = 0, (145)
{BJ(ci1 + c23) = 1H{BJ(c11 —e23) =1} = 0. (146)
Since Rig > 0, from eqgs. (139)-(141) and eq. (145), we obtain
—(BJcr — 1)(c3y + c13) + 2B c1ac13¢03 = 0. (147)

We study the two cases A fJ(c11 + co3) = 1 and B BJ(c11 — co3) = 1 separately.
II-A. BJ(CH + 023) = 1.
By using 8J(c11 + co3) = 1, eq. (147) becomes

cas(cra + c13)* = 0. (148)
We study the two cases A-1 co3 = 0 and A-2 c93 # 0 separately.
II-A-1. ¢33 = 0. Continuous attractor: CA
From eqs. (143) and (144), we obtain ¢;; = % From eqs. (140) and (141), we obtain

c12 = c13 = 0. From ¢195 = ¢13 = ¢93 = 0, we obtain us = u3 = uy and Piuy = Pyus.

From eq. (128), we obtain 8 Pyu; = ¢11. Since ¢11 = %, we obtain
1 1
= = 149
b SPBJ  (1+3a)3J (149)
P 1
- = 150
2 BT 1—a)p] (150)

From eqgs. (149) and (150), x; and x = x5 = x4 are uniquely determined. From the
relation z; = fJ=;, E; is determined. From egs. (133)-(135), we obtain o’ = b = ¢.

Thus, we have
= = R’+6d, (151)
E5 = R*—2d=Z=2=7E1 (152)

Subtracting both sides of eq. (152) from those of eq. (151), we obtain

r l‘%—l‘%
“ = G (153)
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Because of a’ = V', we have

a v
e P L (154)
On the other hand, adding both sides of eq. (151) and those of eq. (152), we obtain
1 % + 323
R = (142} —4a)="1_—12 155
2( 1 + 2 a) 4(6J)2 ( )

From eq. (154) and o' = b = ¢ = R%, + RyrR3;, we obtain
RQ]Rg[ = (l/ — R%R

In addition, from the definition of R? we obtain R3; + R3; = R* — R?, — 2R3p. Thus,

we obtain
Ry + (Rig + 2R3, — R*)R3; + (d/ — R3R)* =0.

Since R%; and R2; satisfy the same equation, assuming R3; > R32, we obtain

—(Rip + 2R3, — B?) + /(i + 213, — R°) — 4(d' — R3,)°

R, =
21 2 ?
(156)
e (Bt 2Ry~ B - (R 1 0FE, B A~ )
3 .
2
(157)

Thus, Ror = R3g, Ror and Rs3; are determined by Rpg. Since this solution is a one-
parameter family, it is a continuous solution. See Appendix E for a range of R;g which
is derived from the condition that R3; is real. Furthermore, when the correlation a is
zero, we obtain u; = us = ug = uy and xr; = ry = 3 = x4. From eq. (153), we obtain
a' =V = = 0. Thus, we obtain Ryr = R3g = 0 by eq. (154). In this case, we obtain
Ror = 0 or R3; = 0 since ¢ = RyrR3r becomes zero. Therefore, the number of non-zero
variables among R, is only two.

II-A-2. o3 # 0.

From eq. (148), we obtain ¢12+c13 = 0. By egs. (129) and (130), we obtain Pyu; = Pyus.
From eqs. (128) and (131),

C11 = 4P1U1 -+ 2P2<U2 -+ U4), (158)
Co3 — 4P1U1 + 2P2(—U2 - U4). (159)

By BJ(c11 + c23) = 1, we obtain 8 Pju;5J = 1. Thus, we have
I 1
88JP,  (1+3a)3J’

Ui =

(160)
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_P1_1
BT BT A —a)sT

From these equations, x; and x3 are uniquely determined. From eq. (143), we have

(161)

(1 = BJci)Ror = BJcaz Ry
By BJ(c11 + c23) = 1, we obtain
Ryr = Ry # 0. (162)
From eq. (143), we obtain ¢j5 + ¢33 = 0. Thus, from eq. (139), we obtain
C12

Rip = —(Rop — R3pr). (163)

C23
From eq. (140), we have

(1 = BJew)Rop = BJ(craRir + cozR3r).
By substituting eq. (163) into eq. (157), we obtain
(¢35 — Ci2)(Rsn — Rag) = 0.

If we assume (c3; — cly) # 0, we obtain Ryp = R3g but Rip becomes zero from eq.

(163). Thus, we have

2 2

We study the two cases A-2-1 ¢1o = co3 and A-2-2 ¢15 = —co3 separately.
II-A-2-1. ¢ = c93. Asymmetric mixed solution: A;

From egs. (162) and (163), we obtain
RQ[ - R3[. (164)
Rig = Rop— Rsr. (165)

From egs. (129) and (131), we obtain us = uz, 9 = x3 and =5 = =3. From eqgs. (133)

and (134), o’ = ¢ follows and we obtain

RipRop = RopR3p + RorRsy. (166)
From eqs. (132)-(135),
= = R?*+4d +20, (167)
=2 = R*-2V, (168)
=2 = R*—dd +2V. (169)
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By definition, we have

R* = Rip + Rz + R3, + Rip + R,

(170)

As is shown below, from egs. (79), (165), (166), (167), (168) and (169), the five variables

are determined. Thus, this is not the CA. Eq. (170) is expressed as

R* = Rip+ Rjp+2R3 + (Rog — Rig)

= 2R, + 2R3, + 2R3, —2d.

From ¥’ = RigR3r and eq. (165), we obtain

R, = d-V.
Thus, we get a’ > b'. From Rip = a’ — b and @/, we obtain
R 9 d
2 Ry d =0V
By substituting Rsr into @’ = ¢/, we obtain
11,/
s a'b
R2I —_— a — a/ — b/.

By substituting the above equations into eq. (171), we obtain

R* = 2(2d -V).

Then, from eq. (167) we have

Z7 = R*+4d +2V =8d,

1

ad = gaf > 0.
Similarly from egs. (168) and (169), we obtain

= o= RP-2V =4(d - V),

E1 = R*—4d +20 =0.

Thus, x4 = 0. By egs. (173) and (175),
1
Vo= g(E% —222).

From eq. (172),

Since we derived o' = ¢ and ', we obtain

1
2 / / —2

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)
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12 —4
a =1

2 _ _
2 b, 2 2 1 —2 —2\2
Rip = (?) 2R = 1653(:1 —255)%, (180)
11/ =2
2 abl Ey —2 =2
= R,

From a' = RigRog and a' = ¢ = 222 > 0, we obtain Ryr > 0. From R3; > 0, we obtain

1
8
the following condition.

(255 +=1)(25, — Z1) > 0,
= < 25
By the definition of ¢ and ¢’ = 21, we obtain
1_
RorRsp = gif i
EQ
= —L (51 + V25)(E — V25,).
16=5
From the condition =; < 2=,, we obtain RoprR3r < 0. Thus, R3g < 0. The critical
point is 7™ = % The values of u;, Rjp, Ry and R are
1 1 0
u = TV 7 > Uu = U = - s u = — s €T = s
! (1+3a)3J > P (-aps’ 207
1_ =2 1 _
Rip = 53 Rep=-=", Rsp=——IE] — 253,
2 =) =2
2 =l e o 2 L /= =2
RQI = —1 (4:2 — .:1) - R3[, RQI = jo, R=- =1 + 2:2.
16=5 2
II-A-2-2. ¢5 = —c93. Asymmetric mixed solution: A,
Asymmetric mixed solution A, is obtained by the condition cs3 = —c15. This solution

is derived from the solution A; replacing u = 3 with 2, [ = 2 with 3 and [ = 4 with 2.
I1I-B. 6J(011 - 023) = 1.
By using 8J(c11 — co3) = 1, eq. (147) becomes

Cas(c12 — ¢13)” = 0. (182)

We study the two cases B-1 cy3 = 0 and B-2 c93 # 0 separately.
II-B-1. ¢o3 = 0. Continuous attractor: CA
From conditions, the solution is the CA.

II-B-2. Ca3 # 0.
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From eq. (182), we obtain ¢15 — ¢33 = 0. By eqgs. (129) and (130), we obtain uy = uy.
By using 8J(c11 — ¢23) = 1, egs. (128) and (131), we obtain

1 1
T8pIP, - (1-a)f)

From this, x5 = x4 is uniquely determined. From eq. (143)

Uz

Ug. (183)

(1 —BJei)Rar = BJcazRar. (184)
Since 5J(c11 — co3) = 1, we obtain Ry = —R3; # 0. From eq. (139), we obtain

C12

RlR = ——(R2R+R3R). (185)

C23
From eq. (140)

(1 = BJew)Rop = BJ(craRir + cozR3r). (186)
By substituting eq. (185) into eq. (186), we obtain
(¢35 — cia)(Rar + Rr) = 0.
If we assume (¢33 — c2,) # 0, we obtain Rop = —R3g but Rz becomes zero, because of
eq. (185). Thus, we have
Ch3 — Cip = 0.

We study the two cases B-2-1 c;9 = c93 and B-2-2 ¢19 = —c93 separately.
II-B-2-1. ¢15 = —co3. Asymmetric mixed solution: Aj

Similarly to the case of II-A-2-1, we obtain

1 1 1 V1 253
T —— 1y =0, R =YL=

1. = 1,
Rigp = 2= Rop = Zl = Rap, Ry; = 1—6(453 —Z1) =R}, Ry =—Ryr.

(1—a)J

Thus, 2=5 > =; should hold. The critical point is TC(AS) 5

II-B-2-2. ¢35 = co3. Symmetric mixed solution: S3

Similarly to the case of II-A-2-1, we obtain the following.

Ror = Rap , Ror = —R3y.

The critical temperature is TC(SS): % Since Rig > 0, R1r becomes %:2. By o =

RirRaR, we obtain @’ = b = ¢ < 0. By Ryg = R3g < 0, we obtain Rop = —
1
(1 —a)B)’

[1]

T.

, 1 =0, ug = uz = ug =

1
U1:§
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V3_ 1_ =, 3 _
R = 5 =2 Rip = 552 Rop = 5 = Rsgr, Ry = 1_653 = R}, Ror = —Ryr.

Ri = Ry = R3 holds. The critical point is T7.53) _(1*2@%7 _

ITI. (Ror, R3r) = (0,0) Symmetric mixed solution: S,
Firstly, we assume Rigp = Rogr = R3g > 0. Thus, R = Rig = Ry = Rj3 follows. From
eqgs. (136)-(138), o’ = b = ¢ = R? follows. We assume Rz = Ry = R3r. We obtain

R? = R34+ R5+ R: = 3R (187)

From eq. (132), we obtain x; = 35JR;. Thus, we have

R = 357 Ry = Rs, (188)
€

= . 189

357 (189)

From egs. (133)-(135), we obtain
To=1x3 =124 =PBJR < x1=36JR;.
Adding both sides of the SPEs (139)-(141) and using eqs. (128)-(131), we obtain
3 = BJA8Pyuy + 2Pyus + 2Pyus + 2Pyuy).

Because uy, = ug = uy, we obtain

1
ﬁ_J = 6P1U1 —+ 2P2u2.
From the relaltions r1 = 3x9 = 3w3 = 31y, w = u(zr;) and R = \/glﬁJ, the identity
R? = % 21221 Pux? becomes
1 3 1
57 = U+ 30ule)+ (- a)u(%). (190)

Therefore, x; is determined by eq. (190). Let us derive the critical point of the sym-
metric mixed solution S, from eq. (190). The function u(x) decreases monotonically as
x increases and takes the maximum value % at © = 0. Substituting u(0) = % into eq.
(190), we obtain the critical point T = % From the definition of ¢, eq. (56) is
derived. Thus, all equations (53)-(57) are derived.

Now, we show that the case that one or two of R,rs have the opposite sign does
not satisfy the SPEs. Let us consider the case Rig = Rogp = —R3gr > 0. In this case,
o =—-b=—c =R Thus, Z3 =22 = =2 = R? — 2d = R?, and then v = 23 = 74 =

BJ R, follow. That is, uy = uz = uy holds. From (139) and (140 we obtain

1 = ﬁJ(Cll + Cc12 — 013), (191)
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1 = 6J<012 +Cc11 — 023). (192)

Thus, c¢19 = co3 follows. Substituting the definition of ¢;5 and ¢35 into this relation, we

obtain ug = u4. From eq. (141) we obtain

1 = 6J<Cll - 2C13). (193)
Thus, ¢19 = —cq3 follows. From this, we obtain u; = %u;»,. Since u; = wus, this holds
only for a = 0. Next, let us consider the case Rirp = —Rog = —R3gr > 0. Similarly, we

obtain u; = us = u4 and u; = %Ug. Thus, this holds only for a = 0.

9. Appendix C. Properties of the function u(x)

We describe the properties of u(z) = ;}0((3;)). The modified Bessel function of the

first kind I,(z) is defined for the complex number z and the real number v, which is
an analytic function of 2z, and when z is real, the function is real. We use the following

formula for I,(z).”

L()I(z) = % /0 * L (22 cos ) cos{ (1 — v)0}do. (195)

Re(p+v) > -1

When v is an integer n, I,(z) is expressed as follows:

I,(z) = %/OW e® %% cos(ne)dep.
In this case, I,,(z) > 0 for x > 0, I,(0) = 1 and [,(0) = 0(n > 0). u(z) = ml}o((% is O
for any real value z, and u(0) = % follows. Weput n =1, v =1 and z = z in eq. (194)
and obtain
%(wlll(:c)) = 2 '),

Thus,

d 1 9

pul@) = x[(](x)z(&(fv)fo(ﬂf) — L(z)%). (196)
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Subtracting eq. (195) with u =1, v =1 and z = > 0 from that with g =2, v =0
and z = x > 0, we obtain
2 [z
L(x)Iy(z) — I,(2)* = —/ (22 cos ) { cos(20) — 1} db.
0

™

For x > 0, 2z cosf is larger than or equal to zero in the range of integration. Then
I(2x cosf) > 0, and the integration is negative. Thus, v/(z) < 0 for > 0. By the
saddle point method, the asymptotic form for z > 1 is

1 [ 2 1
I(x) =~ %/ ex(l_%)dgb:ex

V2w '

(197)

Therefore, for z > 1 we obtain

When = — oo, u(z) — 0.

10. Appendix D. Proof of relations about {n;‘}

We denote the value &' in the Ith sublattice as 7}’ ®) when the number of patterns

is p(> 2). Firstly, we summarize the relations between /™.

77117(17) =1, (p>2,1=1,--- ’2p71)’ (198)
7);:(2?;))—1 :_771%@)7 (p227l: 17 ’217*1’#:1’._. 7p)7 (199>
nlu,(pﬂ) _ nl;rl,(p)’ (p=>2,1=1,---, 22, u=2,---,p). (200)

We show these relations in the case of p = 2 and 3 in Fig. 12.

(2) 2.2 1,(3) _2(3) _ 3.(3)
?hl( : n @ moomn m
=1 1 1) =1 1f 1 1
=21 1 -1 1=2 1| 1 -1
1=31-1 -1 1=3 1]-1 -1
1=al-1 1 1=4 1]|-1 1
w w

(2) 3)

Fig. 12. Relations among nl“" and nl“"
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The following relation is derived from eq. (199).

2p

St = o (201)

=1
Let us prove the following.

op—1

ST = 0, (p=2,3,--), (h=2,3..p), (202)

In the case of p = 2, it is obvious from Table 4. For general p > 3 and p # 1, the left
hand side of eq. (202) becomes

op—1 op—1 p—2 op—2

1,(p—1) 1,(p—1) 1 1)
2ot = 3 T = 3 Y (203)
=1

By eq. (199), it becomes zero. By using these relatlons, we prove the equations used in
the main text by the inductive method.
Proof of eq. (34)

From eq. (199), eq. (34) can be written as

Z Py = 2v5,, (204)

When p = v, this is trivial. Thus, let us study the case v # v.
(i) Case of p =2

From Table 4, we obtain
2) 2 2 2) v, (2 2) (2 (2) (2
LHS. Znu( u()77 ()+n ()772()"'77“()773()+TIZ()TI4():(@05)

Thus, eq. (204) is proved.
(ii) Case of p=m (> 2)

We assume the following.

Zn“ g — 0, (u #£ v). (206)
For p =m + 1, let us prove the following.
2m+1
,(m+1) v,(m+1
> gt 0, (u # v), (207)
=1

It is necessary to consider the case that p or v is equal to 1 and the case p and v are
not equal to 1.

(ii)-(a) The case that g and v are not equal to 1

n’ () (2 £ 1,1 =1,--+,2™) is equal to n - L) Thus, by egs. (199), (200) and
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(206) we have
LHS. of (207) = 2 Zm (Dt — 9 N~ e blmlr= o — g,

(ii)-(b) The case that p or v is equal to 1

We assume p = 1 without loss of generality. By definition, we have
1,(m+1 1,(m+1 m
771(+)— 771+(2m+):17 (l:1772 )

Since v > 1, by eq. (199) and (202) we have
2m
L.H.S. of (207) = 22771 i) = 2y gt = o,
I=1

This completes the proof.
Proof of eq. (71)
Let us prove the following eq. (71)

op—1

v, 1. 2 ) <M71/): (172> or (271>7
> ufninint =

0, other cases.

By eq. (199), this is also expressed as follows:

v, 1, 2 2p’ (M’ V) = (172) or (27 ]-)7
> i
0, other cases.
When p = v, this holds by eq. (204). We prove eq. (208).
(i) Case of p =2
From Table 4,

LS. of eq. (208) = Zn“@ ;O O

= (2)?75 OO ® g @@ @2 @

v, (2 2,(2 2) v,(2) 1,2
+773()773()773()773()"‘775()774()774()774

4 (u,v) =(1,2) or (2,1)
0 W=v

= R.H.S. of eq. (208).

Therefore, eq. (208) holds.
(ii) Case of p=m (> 2)
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We assume that eq. (208) is true.

e ) 2m) 2m, (1,v) = (1,2) or (2,1),
an m 771 m

0, other cases.

Let us prove the following.

2m+1

AR (u,v) =(1,2) or (2,1)
(m+1) (m+1) 1,(m+1) 2,(m+1 ) ) ) )
Z m i n i )771 ot )771 ) = (209)

0, other cases.

When p # v, it is necessary to consider the case that u or v is equal to 1 and the case
4 and v are not equal to 1.

(ii)-(a) The case that both of p and v are not equal to 1

The left hand side of eq. (209) is calculated as

2m
L.H.S. of eq.(209) = 2 Znl’"(m“)nly’(mﬂ)nll’(mﬂ)nf’(mﬂ)
=1
For [ < 2™ using 7, L) — 1 and nT (m+l) nf’(m) for 7 > 2, it is rewritten as

-1, 1/ 1,(m) 1,(m
= QZU;L o W ( )771( )
=1

Furthermore, we decompose the sum using eq. (199),

2m—1

-1, v—1,( —-1,(m) v—1, 1,(m
= 23 gy ™+ Z gy e |
=1 [=2m—141
2m71 om— 1

= 2| Y gy Zn gy~ o,
=1

In the present case, the R.H.S. of eq. (209) is zero and eq. (209) holds.
(ii)-(b) The case that u or v is equal to 1

We assume p = 1 without loss of generality.

2m+1

LHS of 6q(209) = Z nll,(m—l—l)nlu,(m—l—l)nll,(m—kl)le,(m—I—l)
=1

2m+1

v,(m+1) 2,(m+1
= 1x Z n h g

By using eq. (204), we find that the above equation becomes 2™, ,,. Therefore,

2m+17 (M? V) = (172)7
0, w=1uv#12.

This completes the proof.
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11. Appendix E. The range of R,r and relations Rz, Rogr and R3gr for the
CA when p = 3.
In the CA studied in Appendix B, there are the following relations with Ry > 0.

!/

Ry = 0, Rop= R3r = >0,
Rip
P B e
8(8J)*° 4(BJ)? "
a’ = b, = C/ = R%R + RQ[Rg].

From these, we obtain (RerR3r)* = (Rop — ')? and R3; + R3; = R* — R?, — 2R3p.
Thus, t = Ror or R3p satisfies

t? + (Rigp + 2R3z — RH)t + (' — R3p)* = 0. (210)
We put b = R2, + 2R2, — R? and ¢ = (a/ — R%,)?. Then, the solutions of eq. (210) are

bV —4e
- 5 ,

t

Since each of R3; and R3; satisfies eq. (210), we assume R3; > R3; and we have

) —b+ Vb2 —4¢
R2I = 2 Y
R SN/ ay:
R3I - .

2

We find ¢ = (a/ — R2;)? > 0. Since R?, and R2, are real and non negative, b? — 4¢ > 0
and b < 0 should be satisfied. Firstly, we study the range of Ry in which the following
relation holds.

b —4¢ = R+ R'4+ 4R’ R%, —4R2,R* — 2R, R* — 4a” + 8d'R%, > 0(211)

Now, we put y = Ri,. By the relation Rop = %, eq. (211) reduces to

fy) =y* — 2R*? + R'y + 8d”® — 4a”R* > 0. (212)
. . 2 22432 , =222 ., .
By substituting R* = =52 and o’ = =Lg=2 into eq. (212), we obtain
_ 1. _ - -
F) = b~ Z)y — 1@+ D Hy - (& -5 20 (213)
Therefore, three solutions of f(y) = 0 are
1 1
- =2 (= =3V (=, —=.)2
Next, we investigate the extreme values of this expression. The derivative of f(y) is
1 1 1
' = 3P -Ay+ A2 =3(y—-A)y— —A 214
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where A = =% + 323. Thus, the extreme values are attained at y = 14 and £ A. Note

that R? = iA. Aty = %, f takes the following value

L _ — \2—=2
fo= '—Ig(~1‘—~a) Z25
and atyzl—AQ,it does
1 1
= — (51 +35:)° - — (51 - 5y)%=5.
f 432( 1+ 3Es) 16( 1 — 52)°5)

We investigate the magnitude relation of the three solutions. From =; > =, > 0, we
obtain % > =y and % > % > (. Therefore, the shape of the graph of f is as

shown in Fig. 13. Thus, the range of R1z where f > 0 is satisfied is the following.

f A

f=0

A= R > R

H= ] =

Fig. 13. Function f.

(1) When =Z; > 3=, = < Rip < l(El — EQ) .
(11) When El < 352 l(El — Eg) < RIR < EQ .

Now, let us study the region in which b < 0 holds. We define the function g(y) as

g(y) = Rigb=y’— R’y + 24"
1. _ 1 5 =
= ¥ - Z(Z% +353)y + @(:f —E3)°
We estimate g(y) at y = Z3 and 1(Z; — Z)2.
- Lo ovim2 o=
9ED) = (= - =E - 95))
1, 1 e
9(;E1-%2)) = 55(:1—':2)(:1—'3:ﬂ(:14*:2)

Thus, the necessary and sufficient condition for b < 0is Z1 < 3=2,. Therefore, the case

(i) should hold. Next, let us study the magnitude relation of Ry, Rer and R3g. The
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range of R1r where the CA appears is

R~ < Rizp<R', (215)
where R~ = 51552 and RT = Z,. We compare the magnitude relation between R;r and
R2R.

RlR_RQR — L(RQ _E%_E%)
Rip g 7
Since =; < 3=, R;p takes the minimum value %(El — Z5). Thus, we obtain
, S2_E2 1
(Rm — 7) = —(E] —E)(E —3=) <0.
8 man 8
Therefore, we obtain Rigp < Ror. On the other hand, when R;p takes the maximum
value =,
=2 =2 1
(Rip — 3 ) = §<3E2 +Z1)(35, — =;) > 0.

Thus, we obtain Rz > Ror. When =, = 35,, then Rig = Rop = Rap = =0, b=¢=0,
and Ry; = Ror = R3; = 0 follow. That is, the CA degenerates into the symmetric mixed
solution Sy.

From the above results, it is proved that there is a situation with Riz = Ror = R3gr
as long as the CA exists, since the magnitude relation between Rir and Ryr changes

in the range of Rig.

12. Appendix F. The stability analysis of irrelevant solutions for p < 3
Now, we investigate the Hessian matrix at each unstable solution. Each component

of the Hessian matrix is given in eqs. (62)-(64).

12.1 Case of p =2
12.1.1 Symmetric mized solution So

For Sy, we have

1 1 T 1
= - =———— Rip=—7=-R Ryy=0, R= .
Uy 9 , U2 (1—CL)/BJ’ 1R Q/BJ 2R > 21 ) \/Q/BJ
Thus, the critical point is 752 — % The values of ¢, and c,, are
1 n 1+a 1 N 1+a (114 v)
Cupp = =—— C = ———= , v).
DY) VI 267 " 4 K
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Now, we put ¥ = JN(3 — 23.J). Therefore, the Hessian matrix H is expressed as

1R 2R 11 21

IR{ A —A 0 0

2Rl A A 0 0
H =

7l o 0 5 -5

20\ 0 0 -3 7§

where A =4 — 2JN(B8.J)?>X,R2,. Its determinant is
H—AE| = (24—X)(2% — M) (=)
Eigenvalues of this matrix are

A =0 (2fold), 24, 27.

If ¥ > 0, the solution is stable. The condition is T" > % . However, the condition for
the existence of the solution S, is T" <T: (S2)— @ Therefore, the symmetric mixed
solution Ss is unstable.
12.2 Case of p=3
12.2.1 Symmetric mized solution S3
For S3, we have
1 1
u1:§, x1 =0, u2:u3:u4:7<1_a)ﬁj,
R= ?EQ, Rip = %EQ, Rop = —=* = Ran, By = 1—36:3 = R}, Rayy = —Ry.
R = Ry = R3 holds. The critical point is TC(SS): % The values of ¢, and ¢, are
CW:M%+1;&’ cu,,:—lw%A—lga, (n#v)
We put 4 = JN(3 — 1g—“6J ). Therefore, the Hessian matrix H is expressed as
1R 2R 3R 17 21 31
1R [ 3A—2% —24+43y —24+34 0 B ~-B
OR| —2A+35 3A-25 A B 0 0
L —2A 434 A 3A — 2% -B 0 0
17 0 B -B 3A —24 0 0
21 B 0 0 0 34—-29 —3A+44
3] -B 0 0 0 —3A+45 3A-2%
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where A =4 — LIN(8J)2X,Z% and B = —1JN(8J)?¢rlor. Because of the rotational
symmetry, 17 = 0 can be assumed. Then, we consider 5 X 5 matrix without 1/ com-

ponents. Then, its determinant is

3A—29 -\ —2A+34 2B
H—AE| = —(2%—MN4A—-45-2\)| —4A+65 4A—29— )\ 0
B 0 —6A + 65+ X

Two of six eigenvalues are 24 and Q(A— A) In order that Sj is stable, 4 > 0 is necessary.
The condition is 7 > {=97 ) . However, the condition for the existence of the solution Ss

is T <75 = U 2a) Therefore the symmetric mixed solution Sj is unstable.

12.2.2  Asymmetric mixzed solution Ay

For A;, we have

1 1
1 (1+3a)6J7 2 3 (1—CL)/8J’ 4 27 4 )
1 =2 1
Rip = =Ey Rop=-=t, Rsp=—— |57 — 255
1R 2 2 2R 4:27 3R 4:2 1 21y

=== [ e —
R%I = ’_1 (4._43 ._‘%) = Rg[’ RQI = R3I) R = — :‘% + 2:%
1621 2

=1 < 2=, should hold. The critical point is TC(AI) a ;) The values of ¢,, and c,, are
3 1—a 1 1—a

n=qp7 T8 T 437 T T8

We put v = JN (i — 1%8“ pJ) and then the Hessian matrix H is expressed as

= C23 = —(13.

1R 2R 3R 17 21 31
\R{ A  A—2/ B G’ e G
Rl A2y A B2y & e G
L3Rl B B-2y A G’ e G
| o G’ G’ c’ D' D' +2y
ol | @ G’ G’ D' o -2y
3\ @ G’ G D42y -2y

where A" = v — LIN(BJ){XiZ3 + Xo s}, B = 7 — LIN(BI)*{XiZ3 — X2},
C' = v — JN(BJ)*R3(X, + Xy), D' = —y — JN(BJ)?’R%,(X; — X3) and G’ =
—iJN(BJ)ZchlRCH. Because of the rotational symmetry, Ry; = 0 can be assumed.
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Then, we consider 5 x 5 matrix without 1/ components. Then, its determinant is

27— A —4~" + 2) A 0
H-AE| = (29— )) 2A" — 29/ — X 0 —2A"4+ 2B+ )\ 2G"
—2A"+2B" +29 + )\ —4/ 4A" — 4B — ) 0
2G’ 0 0 20" =2+ — A
Thus, 24/ is one of eigenvalues. In order that the solution is stable, 7/ > 0 should hold.
That is, T' > % is necessary. However, the condition for the existence of the solution
AyisT <TC(A1): % Therefore, the asymmetric mixed solution A, is unstable.
12.2.3  Asymmetric mixzed solution As
For As, we have
ulzm, u2:u4:m, u:;z%, :E3:O,R:7':%2+2:%,
Rir = %Eh Ror = % = Rsp, Ry = %(453 —2%) = R3;, Ror = —Ry.
2=9 > =1 should hold. The critical point is TC(A?’): %
The values of ¢, and ¢, are
3 1—-a 1 1—a
CWZM—JJr 3 612:45—J_ 3 = C13 = —Cg3.
Defining ~* = JN(% — %“BJ), the Hessian matrix H is expressed as
1R 2R 3R 11 21 31

1R A* A — 2v* —A* —w* c* c* —C

2R A* — 297 A* —A* —w* 4 297 (O c* —-C*
A= 3Rl —A" —w" —A"—w" 427" A* -~ —C (O

17 c* C* —-C* B* B* — 2~* —B*

21 c* C* —-C* B* — 2~* B —B* 4+ 2v*

31 —-C* —C c* —B* —B* 4+ 2v* B*

where A* = ~* — 1JN(BJ)*22(X; + 1Xo), B* = v* — JN(BJ)2X,R3, C* =
_iJN(/BJ)2X2C2RC2[ and w* = %JN(ﬁJ)zXlE%. Because of the rotational symmetry,

Ry = 0 can be assumed. Then, we consider 5 x 5 matrix without 1/ components. Then,
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its determinant is

1 2A* — 29" — \ —wt — A 20
—2 0 A 0
H—AE| = —(2v"—))
1 —4A* — 2w+ 29" + A 0 —4C*
0 20 0 2B — 29" — A

Thus, 27* is one of eigenvalues. In order that the solution is stable, v* > 0 should hold.
That is, T' > % is necessary. However, the condition for the existence of the solution

Asis T <TC(A3): % Therefore, the asymmetric mixed solution Aj is unstable.
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