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We analyze the structure of attractors in the classical XY model with an associative-
memory-type interaction by the statistical mechanical method. Previously, it was found
that when patterns are uncorrelated, points on a path connecting two memory patterns
in the space of the order parameters are solutions of the saddle point equations (SPEs)
in the case that p is O(1) irrespective of N and N > 1, where p and N are the numbers
of patterns and spins, respectively. This state is called the continuous attractor (CA). In
this paper, we clarify the conditions for the existence and stability of the CA with and
without the correlation a (0 < a < 1) between any two patterns in the case that N > 1
and the self-averaging property holds. We find that the CA exists for any p > 2 when
a = 0, but it exists only for p = 2 when 0 < a < 1 and for p = 3 when a < 1/3. For
p =2 and 3, and for a < 1, we analyze the SPEs and find all solutions and study their
stabilities. We perform Markov chain Monte Carlo simulations and compare numerical
and theoretical results. We find that for a finite system of size N and for a = 0, owing
to the breakdown of the self-averaging property, the CA ceases to exist at a finite value
of p. We define the critical value of p, until which the CA exists and numerically study
the system size N dependence of p.. We find that the numerical results are consistent
with the theoretical results obtained by taking into account the breakdown of the self-
averaging property. Furthermore, for a > 0, we numerically study the case that patterns

are subject to external noise and find that p. increases as the noise amplitude increases.

*uezu@ki-rin.phys.nara-wu.ac.jp

1/62



J. Phys. Soc. Jpn.

1. Introduction

Since Hopfield proposed a model of the associative memory of a neural network,"

many studies on the subject have been carried out from the viewpoint of statistical
mechanics? ~.7) In many studies, states of neurons are represented by Ising spins as in
the Hopfield model. In our previous study,® however, we adopted the classical XY spins
as states of neurons. The main motivation for this is that we wanted to construct an
associative memory model with the following properties that real brains have. In real
brains, different memories spontaneously appear one after another, and by an external
stimulus, a memory related to the stimulus is retrieved. That is, it seems that many
memories in a real brain are “connected” in a sense. We expected that associative mem-
ory models composed of the XY spins would have such connected memories because
they have a continuous degree of freedom, contrary to models composed of the Ising
spins, which have only isolated memories, i.e., point attractors.
We analyzed the XY spin system with the associative memory interaction by the sta-
tistical mechanical method in the case that p is O(1) irrespective of N and N > 1,
where p and N are the numbers of patterns and spins, respectively, when patterns are
uncorrelated. We derived the saddle point equations (SPEs) for the order parameters,
and by numerically solving the SPEs we found a new type of attractor, the so-called
continuous attractor (CA). The CA is a one-parameter family of solutions of the SPEs,
and the points on a path connecting any two memory patterns in the space of order
parameters become solutions, which we expected to exist in the XY spin system. See
Fig. 1. We performed Markov chain Monte Carlo simulations (MCMCs) and confirmed
the theoretical results numerically.

In this paper, we study the two cases that patterns are uncorrelated and correlated,
in the case that N > 1 and the self-averaging property holds. Let a be the correlation
between any two patterns, 0 < a < 1. By introducing sublattices, we rewrite the SPEs
in a compact form, which allows us to characterize the CA and enables us to study
solutions of the SPEs and their stabilities analytically. Then, we find the conditions
for the existence with and without the correlation a. The CA exists for any p when
a = 0, whereas it exists only for p = 2 when 0 < a < 1 and for p = 3 when a < %
We perform MCMCs and compare numerical and theoretical results. When a = 0,
contrary to the theoretical result, numerical results show that the CA ceases to exist

at a finite value of p. We define the critical value of p. until which the CA exists
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Fig. 1. Schematic figures of point attractors and continuous attractors. £ denotes a pattern. Left:
dips represent point attractors. The dip in the middle is a mixed state composed of three patterns.

Right: valleys represent continuous attractors.

and numerically study the N dependence of p.. We find that the numerical results are
consistent with the theoretical results obtained by taking into account the breakdown of
the self-averaging property. For a > 0, we confirm the theoretical results by numerical
simulations. Furthermore, for a > 0, we numerically study the case that patterns are
subject to external noise and find that p. increases as the noise amplitude increases.
The structure of this paper is as follows. In sect. 2, we analyze the SPEs, rewrite
them by introducing sublattices, and show the list of stable solutions for p < 3. In
sect. 3, we characterize the CA and derive the conditions for its existence. In sect. 4,
we study the stabilities of the relevant solutions, mainly for p < 3, by calculating the
Hessian matrix. In sect. 5, we show numerical results for the phase diagram in the (a, T')
plane, the temperature dependences of order parameters, the N dependence of p., and
the effects of noise input to patterns. Section 6 contains a summary and discussion
of the results. In Appendix A, we derive the expressions for the free energy and the
SPEs, and we describe the properties of the function u(x) that appears in the SPEs
in Appendix B. In Appendix C, we give proofs of relations among variables related to
sublattices. We derive all solutions of the SPEs for p < 3 in Appendix D. The stabilities
of irrelevant solutions of the SPEs for p < 3 are analyzed in Appendix E. In Appendix
F, for p = 3, we derive the range of an order parameter that characterizes the CA, and

relations between order parameters for the CA.
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2. Analysis of the Saddle Point Equations
We study the XY model, which consists of N XY spins X; = (cos ¢;,sin¢;), 1 <
1 < N, where ¢; is the phase of the ith XY spin. The Hamiltonian H for the XY model
is given by
- Z Jij cos(p; — ¢;). (1)
i<j

The associative memory interaction is expressed as
J p
= ) e )
pn=1

We assume that the pth memory pattern £ takes values of £1 and that a correlation

exists between the memory patterns, which is represented by (£'¢¥) = ady; for p # v

and (£/'¢f) = 0y, where (---) denotes the average over {¢;'}. We assume 0 < a < 1.

The order parameter is defined by
N

Bun = Z cos . (3)

N
1
Ry = N Zl ; SiL ;. (4)
The Hamiltonian is rewritten as follows:

JN ,  JIp
pn=1
R, = \/ RiR + R,Qu- (6)

2.1 Free energy and saddle point equations
As is derived in Appendix A for N > 1, the free energy F = —l In Z is expressed
as Eq. (7), where f = =+ and the Boltzmann constant is set to 1, kg =1,

JN

F = TR2 - = Zln (2rIo(BIZS)), (7)

where

R = Xp: R, (8)
\&

= = \ Zf R,R)? Zf Ryur)?, (9)
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1 2w

L(z) = e 5% cos(ng)de. (10)

27 o
I,,(z) is the modified Bessel function of the first kind. The SPEs are obtained as

1 K&
Rup = B3 D ) u(x))& Run, (11)
j=1 v=1
1 K&
Ru = BJ5 D Y ulz)&€ Rur, (12)
j=1 v=1
_nRI=. — Li(x)
:L‘j_BJ‘—‘Ja U(l‘)— $Io(l’) (13)

The function u(x) has the following properties:
1
u(0) = =, lim u(z) =0,
2" rz—o0

u(z) >0, forx >0, u'(z) <0, for z > 0.

See Appendix B for details. Figure 2 shows the graph of u(z).

Fig. 2. Function u(x).

We consider the case that the self-averaging property holds. That is,

N
=3l = lo(e) (14
j=1
where [-] means the average over {£!'}. Thus, we obtain
R = BJZP:CWRVR, (15)
1:1
Ry = BJY cuBunr. (16)
v=1
Here, we define
Cww = [U@J)fff;] = Cup- (17)
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Now, let us study whether or not reflection symmetry exists in the solutions of the SPEs.
(11) and (12). Suppose that the order parameters ({R,r}, {R.,r}) are the solutions of
the SPEs. Let us consider the order parameters in which the signs of R, r and R,
are reversed, that is, we consider (Rig, -+, —Ruor, -, Rprs Rir, -+, —Ruor, -+ Rpr)-
We define R, r = —R,r, £'}° = —&°, and for p # po, R, p = Rup and " = & x; is

expressed as

p p

ry o= B QIR+ Q&R (18)

p=1 p=1
Then, we find that ({i,z},{R),}) satisfy the SPEs. (11) and (12) with & replaced by
& Let 5? be the “mother” pattern, which takes values of 41 with probability % and
produces &, - -+, &, The conditional probability P(£|£7) of £¥ given &7 is

1+\/55 1—+va
& 9

P(Sﬂ&?) = 9 £9 +

Then, we obtain for pu # v
PE.€6) = D PEIEIPEE)P(E)
€0

1+a 1—a

= Qe+ 0grier o) + ——0ekier 0 (20)
On the other hand, we obtain for ;° and v # pu°
1+4+a 1—a
ml ey
P<£ 7 ]) - 4 <57£/70+£/;'72 _'_ 5—5/7"1‘6,;,—2) + Téff/;o‘Fg/;’,O. (21)

Therefore, we obtain (£'°¢")) = —(£[°¢}) = —a for pg # v. Thus, the average over {{'}
is different from that over {£} when a # 0. Thus, we conclude that
(Rig, -+, —Ruor, -+ s Rprs Rar, -+, —Ryo1, -+ -, Rpr) do not satisfy the SPEs for a # 0.
However, if all of the signs of {R,r} and {R,;} are reversed, these are also the solutions
of the SPEs.

Now, we introduce the sublattice A; (I = 1,---,2P), which is a set of i. In A, &/

takes the value /",

<§@17§z277§1p>:<nll777127777f)7 iEAl.

{n'} are determined consecutively for p > 2 as follows. When p = 2, we define n{ =
1,n? =1,n) = 1,73 = —1. Starting from this, other 7" are determined. We set n} = 1
for [ =1,---,2P~1, We define A;, 91 in which the following relations hold:

nlu-i—QP—l = —771“7 (l =1,-- ’2p71 U= L. 7p>' (22>
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In addition, when the number of patterns is p + 1, the values {n;’ P H)} for p+ 1 are
determined so that nlz’(p AR 1 LGP have the following relationship with the values
{n""} for p:

771%(p+1) = 77;14717(17)7 (l:17 72p ’ :u:27 7p+1> (23>

See Appendix C for details. For j € A;, Z; takes the same value, which we denote by

=;. = is expressed as

p p
2= | O Rurn)? + O Ruml')?, (24)
pn=1 pn=1
ElJrQI’_1 = I ’ (l = 17 27 e ’2p71). (25>

Let P, be the probability that ! is equal to i) for i = 1,2, -- -, N. By the self-averaging

property, the average over N neurons is expressed as
| 2p
2.9 = > Pglp). (26)
j=1 1=1

The SPEs. (15) and (16) and Eq. (24) are rewritten as

p
Rz = BJY cuwRug, (27)
v=1
p
Ry = BJY cuhur, (28)
v=1
2P
Cup = szuml“?ﬁ' = Cup, (29>
1=1
w = u(y), x =pLJE, (30)
5 = JR*+2> n'n(RurRur + RuRur). (31)
p<v
From Eq. (31), we obtain
opr—1 or—1
Z El2 = Z (R2 + 2 Z T]lu?ﬁ/(RuRRyR + R“[R,/[)> . (32)
=1 =1 u<v
The following relation holds:
2p—1
Z niny = 20715, (33)
=1
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See Appendix B for its proof. Therefore, Eq. (32) is rewritten as follows:

op—1
B o= 2R
1=1
12
2 _ Ry
R= op—1 Z<E)

=1

From Eqgs. (27) and (28), we obtain

p
R, = BJY  cu(RurRur+ RuRur).

v=1

Thus, by using Eq. (29), R? is expressed as

p p
Rz = Z BJ Z Cu(RurRur + RurRur)

pn=1 v=1

)
= —ZPlula:lQ.
b=

2.2 Stable solutions of the SPEs and their stabilities

(34)

(36)

In this section, we list the stable solutions of the SPEs for p < 3. Detailed descrip-

tions including unstable solutions are given in Appendix D. The stabilities of the stable

solutions are analyzed in sect. 4 and those of the unstable solutions are analyzed in

Appendix E.

2.2.1 Case of p=2

oo

I=1 1 1
[ = 1 -1
[ = a4 -
- 1 1

Table I: Values of {n}'} in each sublattice for p = 2.

In Table I, we show the values of {7;'} in each sublattice.

Memory pattern: M

Ry > 0 and Ry = 0. This solution exists only when there is no correlation between

patterns. The solution is characterized as
1
BJ’

Uy = Uz = X1 = T,

(37)
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1
Cu = 2575“”’ (38)
R = R =2

(M

The critical temperature is 7™M = % The solution exists for T < 7™ and is stable.

(39)

Continuous attractor: CA

This solution exists for a < 1 and is characterized as

1 1
Uy = ——— Up=—— 40
! (1+a)8J’ 2 (1—a)BJ (40)
1 2 4 22
y = =0, RP=212 41
Cﬂ ﬁJ 228 2<6J)2 ( )
The critical temperature is TN = % The CA is stable for T <T Y.
Symmetric mixed solution: S; (Rig = Rag, Ri; = Ro; = 0)
This solution is characterized as
1 1
— - == =0 42
U (1+Q)BJ7U2 27']72 ) ( )
1 1—a 1 l1—a
- L= — — , 43
T al
Ri = —=Ry,R=——. 44
! 28 ° V237 (44)
The solution exists for T <T°"= % The stability condition is
1—a)J
L7¥—<T<ﬂ“. (45)

Thus, this solution is unstable for a = 0.

2.2.2 Case of p=3

n i n;
I=1 1 1 1
1=2 1 1 -1
=3 1 1 1
I = 1 1 1
1=5 1 1 1
1=6 1 1 1
| = 1 1 1
1=8 1 1 1

Table II: Values of {7;'} in each sublattice for p = 3.

In Table II, we show the values of {n}'} in each sublattice for p = 3.
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Memory pattern: M

This solution exists only when there is no correlation between patterns. It is character-

ized as
1
Ui = UQ:U3:U4:E,.T1:.T2:.T3:.T4, (46)
! ~0, R=R (47)
c = —,Clp=C3==¢C
11 37 12 13 23 = 1= BJ
This solution exists and is stable for T' <TC(M), where TC(M): %

Continuous attractor: CA

This solution exists for a < % and is characterized as

- (48)
T 11 3a)3T
1
Ug = U3 = Ug = m, (49)
To9 = T3 = X4, (50)
1 5 X3+ 313
C,u,l/ /Bjé,u,l/u R2R R3R7 R 4(/8J)2 (5 )

We denote the critical point as TC(CA)

, which is determined by the condition z; = 3z,.
For example, in the case of a = 0.1, TN =0.42. Tt is stable for T < T.M.
Symmetric mixed solution: S, (R; = Ry = R3)

Rir = Ror = R3g holds, and this solution is characterized as

1’2:553:554:%7 (52)
Uy = U3z = Uy, (53>
1 3 1 x
E?:Z“+3@“%)+Z“_am“§% (54)
591+ 30) L (130w (i) (55)
Coup = — — a)uy, €y = —— a)u v),
e — BJ 15 Cu ﬁJ 1 M
T1
R =Ry=R;3, R= . 56
1 — 36J 2 — 3 \/_/BJ ( )
The critical point is 7>V = (1+2a . When a < 3, this solution is stable for TN <

T <T®Y. When a > %, it is stable for T < T,
In Appendix D, we prove that for a # 0, when one or two of R, Rog, and R3g have

different signs, they do not satisfy the SPEs.
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3. Characteristics and Conditions for the Existence of a Continuous Attrac-
tor
The CA is defined as a one-parameter family of solutions. The existence of the CA

depends on p, J, 3, and a.

3.1 Characteristics of the CA

The CA is characterized by Pu; = constant for all [ and ¢, = 550,,. Let us prove

1
BJ
these statements.

(1) Pu; = constant.

From Egs. (34) and (36), we obtain

or—1 or—1

Z ;= QPBJZ Py} (57)
=1 =1
The sufficient condition for Eq. (57) is
.T}l(l — QI’BJPlul) = 0.
The condition satisfying this equation is either of the following two equations:

5 o= 0, (58)
1
Pu = 93] (59)

If Eq. (59) holds for all I, Pju; is determined only by 5, J, and p. Therefore, xq, - - -, z9p—1

is determined only by 3, J, p, and a. In this case, if there is one variable that can change

freely, it is the CA.

(2) e = 6_55“”
-1
Now, let us assume that Pu; = constant for all [. Then, by using leil nny = 2Pt

g
we obtain
2P
Cw = _PlUl 2771“771” = -Plul2p5uu-
1=1
Therefore, because Pju; = ﬁ, we derive
1
CMV = E(SW. (60)

Conversely, if Eq. (60) holds, the SPEs. (27) and (28) are satisfied and zy,--- ,x, are
determined by Eq. (59).
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3.2 Conditions for the existence of the CA for a =0

The CA exists for arbitrary p (> 2). Let us prove this. Let us assume that only two
R,, are not zero. For example, we assume Rip #0, Ri; =0, Ry #0, R3=--- =R, =
0. This is possible since there is no correlation between patterns. From Eq. (59), since
P =1/27 uy = u(zy) = BLJ Thus, the solution exists for u(0) > 5%] This implies that
TN = Ju(0) = 2.

3.3 Conditions for the existence of the CA for a >0

The condition on p for the existence of the CA is obtained by comparing the number
of conditions for the CA and the number of variables R,z and R,;. The number of
conditions is the number of equations on Z;, and is 2P~! since Z;,00-1 = Z; holds.
Because of the rotational symmetry, R;; = 0 can be assumed. The CA is assumed to
be a one-parameter family. Therefore, the number of dependent variables that should
be decided is 2(p — 1). Thus, 2°~! = 2(p — 1) is the condition on p for the existence of
the CA. Only p = 2 and 3 satisfy this condition. Thus, the CA does not exist for p > 3.
The critical point T¢“of the solution for p = 2 is obtained from Eq. (40) for u(zs),

1 1
- - < Z
(1—a)pJ — 2
Therefore, the critical point is TN = % In the case of p = 3, ©; < 35 is necessary.

When x; = 34, the CA coincides with the symmetric mixed solution S,. See Appendices
D and E for details. When the CA disappears, the symmetric mixed solution S4 becomes
stable.

Now, for p = 3, we derive the condition on the correlation a for the existence of the
CA. When T ~ 0, the function u; becomes very small from Egs. (48) and (49), and 1,

becomes very large. The function u(z) can be approximated for x > 1 as follows:

and us = ———. we obtain

See Appendix B. Since u; = =

1
(143a)8J

(14 3a)J
A
(1—a)J

e

Substituting them into the condition for the existence of the CA, i.e., x1 < 3z, we

12

X1

12

X2
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obtain

1

3

In Fig. 3, we show the phase diagram in the (a,T") plane for p = 2 and 3. The theoretical

a <

results agree with the numerical results obtained by MCMCs reasonably well.

* * * ¥ * * * * * * * * * * * * * o—
La¥ * * * * * * * * * * La¥ * * * * * * * ¥ X A
* * * * * * * * * * * * * * * * * * * % om .
12% * * * * * * * * * * 12% * * * * * ¥ x m ] -
* * * * * * * * * * * * * * * * * ; * L] L] L] N
0¥ * * * * * * * * ¥ o LO¥ * * * ¥ ¥ = ] ] L] -
* * * * * * * * _m [ * * * ¥ ¥ m L] ] ] ] .
08% * * * * L - n n s T st * ¥ x  m n n ] ] ] -
* * * * . KT ’ ‘IV L] L] L] L] L * * LK . L] L] L] L] L] L] L] N
0.6 * . ke ‘ I L] L] L] L] L] L] - 0.6 . 9({ L] L] L] L] L] L] L] L] -
f ) l L] L] L] L] L] L] L] L] L * ) L] L] L] L] L] L] L} L} L] n
04¢ L] L] L] L] L] L] L] L] L 04e L] L] L] L] L] L] L] L] -
> L] L] L] L] L] L] L] L] L L L] L] L] L] L] L] L] N
02e L] L] L] L] L] L] L] L] - 02e n L] L] L] L] L] L] -
» L] L] L L L] L] L] L} L L L) L} L} L} L] L] L] .

0.0 ® ®- ® ® ® ® g * g 0.0 ®- - o ol = ol o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0

a a

Fig. 3. Phase diagram of the CA and the symmetric mixed solutions S; for p = 2 and S, for p = 3 in
the (a, T) plane. Curves: theoretical results. Solid curve: TC(CA), dotted curves: 75V and T.59. Symbols:
results from MCMCs with N = 20000. Circles: CA, squares: S1, S4, stars: Para. Left: p = 2, right:
p=3.

4. Stabilities of Relevant Solutions for p < 3
In this section, we study the stabilities of relevant solutions of the SPEs. Those for
unstable solutions are given in Appendix E. We calculate the Hessian of the free energy

F'. The components of the Hessian matrix H are written as follows:

g z )

H(uR,uR) = m =JN <5PW - BJC/JJ/ - (ﬁ‘]>3 ; PlUlXﬂhuTh (ClR)z)u (61>
02 F >

Hpurpry = m = JN((SW — BJeu — (ﬁj)g lzlplulefnly(QI)Q)a (62)
02 F z .

Hupen = IR n0Fs = JN(—(BJ)3 Z PuXm'n, ClRClI)a (63)

=1

where

p p
Gr = > Rornl, Q=) Ry,
w=1 w=1
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v = BJ= =0V (Gr)?+ () Xi= Wiz) .

zyu(x)

These are general expressions for the Hessian matrix.

4.1 Case of p=2
Memory pattern

The memory pattern exists only when a = 0. Since Ry = 0, we obtain
Ror = Ryr = 0.

The values of x;, u;, and R for the memory pattern are
1 T

AN

The solution exists for u; < % Thus, the critical point is ™= % The values of (i,

T1 = T2, Ul = U2 =

Girs Cups Cuv, and Py are given as

glR = CQR = R1R> gl[ = CQI = 07

Cup = 5—1!]7 cw =0 (u#v), Pu= W3
Therefore, the components of the Hessian matrix H are
Humn = —5IN(BIP(Grl* (X + Xa)
= —JN(BJI)*(Gr)*X1 = Horor = A,
Huror = 0, (u#v), Hugor = Hurr =0 (p,v=1,2).

We define the arrangement of the matrix elements as 1R, 2R, 1/, and 21.
1R 2R 11 21

IR{ A 0 0 0

2R 0 A 0 O
,H pum

I7rf o 0o 0 0

2\ 0 0 O O

The four eigenvalues of this matrix are

A=0 (2-fold), A (2-fold).
A is expressed as

A = —IN(BIR(GR) X,

Since J > 0, N > 0 and X; < 0, this is positive. Thus, the Hessian matrix H at the

memory pattern has zero (2-fold) and positive (2-fold) eigenvalues. Thus, it is stable.
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The continuous attractor

By using the relations Pu; = ﬁ and ¢, = 3 Jéu,, for the CA, the components of the
Hessian matrix are given by
p—1
&PF e
R.ORn —JN(BJ)? ZXﬂh m (Gr)?, (64)
m v
p—1
PF E
DR ORy —JN(BJ) 1 ZXﬂh iy (i), (65)
v =1
O°F .
R AOR, —JN(BJ) ZXﬂh 1 GrGir- (66)
m v
Case of a =0
We investigate the stability of the CA for a = 0. For [ = 1,--- | p, we have the following
relations:
1 1 u' ()
Pu = —— =— >0, = tant > 0, X; = < 0.
1ug QPﬁJ’ u; = 5J Z] constan s 1 xlu<xl>
None of the quantities depend on [. We define A as A = JN(B g ——=—3 H. Therefore, we
obtain
p—1
1 PF 1 5 I
Mk = N G OB, 0B 21 lZﬁf‘ i (G (67)
=1
1 e
Nupor = 2p_1X Z m 0y GrGr, (68)
or—1
N = Z 771 u Cll ) (69)
where X = X;. For p > 2, we assume Rip #0, Ri; =0, R #0, Rg3=--- =R, =0

without loss of generality. As is shown in Appendix D, for a = 0 and p = 2, when we

assume Ry # 0, Rog = 0 follows. Then, we have

Rl = |R1R| ) RQ = |R21|7

P p
Gr = Z RMRnf = R1R7711 , Qr = Z Ruﬂ?f = R2I7712'

p=1 p=l1
We substitute these into Eqgs. (67)-(69). The following equation is verified:

op—1 -1
, 2p (u,v) =(1,2) or (2,1),

> “nlnining = (70)
—1 0 other cases.
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See Appendix B for the proof. First of all, we consider the case when (u,v) = (1,2) or
(2,1). Because Y77, (nin?)? = 20,

op—1
1
Nuror FXRlRRQI Z m'nmn; = X RigRar.
=1
When (1,2) # (1,2), (2,1,
1 E
Aupor = FXRlRRQI Z i/ nin; = 0.

Thus, each component of the matrix A is expressed as follows:

2p—1
Nupor = X RQ Z 7)1 =X R2 O
1 2
Mpor - = 5 X Baplor > nfminin
B XRipRor (u,v) =(1,2) or (2,1),
0 other cases,
Mt = XR36u.
The matrix A is
1R 17 2R 21
IR [ Aimir Mirir Mirer Migor R? 0 0 RirRor
A— I Ming Minr M Mapr | ¥ 0 R} RigRyy 0
2R Morir Momir Momer Aapor 0 RirRoy R} 0
21 \ Aonr Aonir Aorar Aopor RirRoy 0 0 R;
We solve the eigenvalue problem of this matrix as
XR:— ) 0 0 X RipRar
0 XR2— )X XRigR 0
A—AE| = 5 1R g
0 XRipRyy XRI— )\ 0
XRirRor 0 0 XR3— )\

= NA-XR*)?=0.
The eigenvalues are obtained as

A =0 (2fold), Xy =XR><0 (2-fold).
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Thus, the eigenvalues of the Hessian matrix H are zero and —JN(BJ)’XR? > 0.
Therefore, the CA is stable. The free energy of the CA has the shape of a valley, which
is composed of the route from a certain memory pattern to another memory pattern.
The eigenvalue with twofold degeneracy A\; = 0 reflects the existence of the CA and the
rotational symmetry.

Case of a > 0

If there is a correlation between patterns, all overlaps R, have nonzero values. Therefore,
we assume Rig > 0, R;; = 0, and Ry # 0 without loss of generality. Since R;; = 0, we

obtain
Cr = Rip + Rar, Cr = Rip — Rar,
Cir = Rir + Ror = Ry, Cor = Rip — Rar = —Ryy.

The Hessian matrix H is obtained from Eqgs. (64)-(66). A is defined as
2

A= —W'H.

We obtain
Mrir = Xi(Gr)* + Xo(Gr)? = Ao = A <0,
Mrr = Xi1(Gr)® — X2(Gr)* = Momir = B,
Mnr = Xi(Gn)? + Xa(Gr)? = Ao = C <0,
Mipr = Xi(Gr)® = Xo(Gr)® = Aopiy = D,
Mipir = XiGrGr + XoGrGr = Aapar = G,
Mipar = XiGrGr — XoGrCr = Aopir = K.

The matrix A is

IR{ A G B K
A 7|y ¢ ¢ K D
2Rl B K A G
2I\ K D G C
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From the rotational symmetry, we can omit the row and column that contain R;;. We

call this matrix A again and solve the eigenvalue problem of A,
A=) B K
A= A\E| = B A=A G =0,
K G C—A
N —(2A+0)N + (2AC+ A% - B*—G? — KH))\
— (A2C +2BGK — AK? — B?’C — A’G) = 0.
The constant term becomes 0 and thus there is an eigenvalue of 0. Thus, we obtain
M~ (2A+O)N+2AC+ A* - B> - G* - K*=0.

By defining g = —(2A+C) and h = 2AC+ A% — B>~ G? — K2, we obtain A>+gA\+h = 0.

The solutions are
As = 5(—0% VP = h)
g2 and h are calculated as
? = ({207 + (G} + X2 + (i)
b= 2X0Xs((Gr)(Cor)? o+ (G)*(Gan)? + 2(Gin)* (Gan)?).

Since A < 0 and C' < 0, g > 0 follows. In addition, since X; < 0, o > 0 follows. Next

we show that g% — 4h is positive.
g* —4h = X{{2(Gr)* + (Gr)*} + X{2(Gr)” + (Gr)*}
+2X1X0{(G)*(Cr)? = 2(Gr)* (Gr)? = 2(Gn)*(Gr)” — 4(Cir)* (Gr)*}-
By defining 21, 22, and z3 as
a = {2(Gr)*+ (G
2 = (Q)*(Gn)?® = 2(GR)* (G = 2(Gn)(Gr)* — 4GR)* (Gr)
= {2(Gr)* + (Gn)*}

g*—4h is expressed as g2 —4h = 2, X7 +22, X, X1 +23X3. Since z; > 0, if the discriminant

d of this quadratic formula for X is negative, g — 4h > 0 follows.

d= (22X2)2 — 2123X22 = XQQ(ZS — 212’3).
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We put 2, = 2(Cir)? + (¢ir)? and 23 = 2(Gor)? + (Cor)?, and obtain
Z; — 2123 = (ZQ + 5153)(22 — 2153).

Each factor is calculated as

o+ Az = 2(Gr)*(Gr)? >0,

2= 0% = —4(Gr)*(Cr)® = 4G (CGr)? = 8(Gir)*(Gar)? < 0.
Thus, the discriminant is negative and we obtain g?—4h > 0. Therefore, two eigenvalues
A+ of A are negative. Thus, the Hessian matrix H at the CA has zero (2-fold) and two
positive eigenvalues. This implies that the free energy of the CA has the shape of a
valley and the CA is stable.

Symmetric mixed solution: S;

We assume R;; = 0 from the rotational symmetry. Thus, we obtain
Rip = Rop , Roy =0.

The values of u;, R, R;;, and R are
1 1 I I

_— =~ Rip= o> =R, R= :
(1+a)ﬁja U2 57 1R 26J 2R \/§BJ
(14a)J

Thus, the critical point is TS = ~—5—. The values of ¢,, and c,, are

1 1—a 1 1—a

C““:%—J_'_ 4 CW/:%—J_ 4 (M?’éy)'

Uy =

Thus, we obtain
1
O — BJcp, = 2

Putting v = JN(% — ITT‘LBJ), the Hessian matrix H is expressed as

1R 2R 11 21
1R A A—-2v 0 0
2Rl A—2y A 0 0
11 0 0 vy =
21 0 0 -y

where A =~ — 2JN(8J)>X R?p. Tts determinant is
(H—XE| = (24—2y—=X)(27 = N)?(=)).

The eigenvalues of this matrix are the following:
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A=0,2(A—7), 2v (2-fold).

Let us study the signs of the eigenvalues. We have
20A—7v) = =2JN(BJ)PX\Ris.

Since X; < 0, this is positive. Thus, if v is positive, the solution is stable. The condition

for this is
(1—a)J
—

Therefore, the symmetric mixed solution S; is stable for 7" >

T >

(1—a)J
—

4.2 p=3
Memory pattern: M
Firstly, we study the case of p = 3. The memory pattern exists only when a = 0. We

assume R;; = 0 from the rotational symmetry. Thus, we obtain
Rsr = Ror = R3p = R3; = 0.

The values of u; and R are

L1 = T2 = T3 = L4, (71)
1
Uy = Uy = ﬁ_J’ (72)
T1
R=—. 73
2 (73)
From Eq. (72), the critical point is M= % The values of ¢, ¢,,,, and Pu; are
1 1
Cuuzwa cw =0, (M?é’/)a Pu; = W3
Then, we have
O — BJcy, =0, for any p, v.
In this solution, X; = o) Xj. Therefore, the Hessian matrix H is expressed as

zu(wy)
1R 2R 3R 11 2I 31

IR{A 0 O
2R| O
3R] O
171 0
21 O
31 \ O

o O O O

o O O o o o
o O O o o o
o O O o o o
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where A = —JN(SJ)2R3X,. The eigenvalues of this matrix are
A=A (3-fold) , 0 (3-fold).
Since J > 0, N > 0 and X; < 0, we obtain
A=—JN(BJ)*R2X, > 0.

Thus, the Hessian matrix H at the memory pattern has zero (3-fold) and three degen-
erate positive eigenvalues. Thus, the memory pattern is stable.
Now, let us consider the case of p > 3. In this case, since Rig # 0 and the other

R,r and R, are zero, we have
H;,LRVR = Aéuu ) (74)
,H;,LRVI = H;,LIVI = 07 (ﬂ) V= ]-7 o 7p) (75)

Thus, H has p-fold zero eigenvalues and p degenerate positive eigenvalues, A. This is
because the memory pattern is the end point of p— 1 different CAs and thus it has p—1
zero eigenvalues and another zero eigenvalue due to the rotational symmetry. Therefore,
the memory pattern is stable for any p when a = 0.

Continuous attractor: CA

Case of a =0
Similarly to the case of p = 2, the matrix A = —W for p > 2 is given as
R 0 0 RigReyr 0 0 0 0
0 R2 RigRor 0 0 0 0 O
0 RigRos R? 0 0 0 0 0
RipRor 0 0 R2 0 0 0 0
H=X 0 0 0 0 R? 0 0 0
0 0 0 0 0 R 0 0
) . ) . . . 0 0
R 0
0 0 0 0 0 0 0 0 R
We solve the eigenvalue problem of this matrix as
IA=ME| = MO\ —XR)»(XR; - NP *(XRI -\ ?=0.

The eigenvalues of the Hessian matrix are zero (2-fold), —JN(B8J)*X R* > 0 (2-fold),
—JN(BJ)*XR? > 0 ((p— 2)-fold) and —JN(BJ)*XR3 > 0 ((p — 2)-fold). Therefore,
the free energy of the CA has the shape of a valley and the CA is stable.
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Caseof a >0

Since the CA does not exist for p > 3, we consider the case of p = 3. It is proved that

Rir = Ror = R3r > 0 can be assumed (see Appendix F). Now, we define o/, ', and ¢

as
a' = RigrRor + RiRoy,
V' = RirRsr + RisRsy,
d = RyogrR3r+ RorRs;.

In Appendix D, we prove that

=2 _ =2

a/ — —1 —2
8
Then, from Rjp = Rer = R3g and R?; = d/, we obtain
=2 _ =2
Ry = = 3 2 = Rop = Rsp,
2 1 2 2 2 2 2 2\2 / 2 \2
Ry = 5{_(R1R +2R5 — R ) + \/(RlR + 2Ry — R )2 —4(a’ — RQR) }
9=2 _ =2
= —(Rizp+2R3;; —R*)=R*-3d = 728 :
2 1 2 2 2 2 2 22 ' 2 \2
R3 = 5{_(R1R + 2Ry — RY) — \/(Rm + 2R, — R?)? —4(a' — R3R)*} = 0.

In Appendix F, =; < 3=, is derived in order to show that R% ; > 0 holds. Furthermore,

since Ri; = 0, the values of (;gr and (j; are
CGir = 3Rir, Gr=Gr = Rir, (Gr= —Rig,
Cir = Gor = Rar, (31 = Car = —Ryy.

For the CA, X, = X3 = X, follows from us = u3 = wuy. The Hessian matrix H is
obtained from Eqs. (64)-(66). We define A as

4
AN=——7"7—="™H.
INGIE
The components of A are
Mrir = 3(3Xi+Xo)Rip = MAopor = Aspsr = A,
Mrer = (9X1 — Xo)Rip = Morig

= Mirsr = Aspir = Norsr = Aspor = B,

Ay = (X1 +3Xo)R3, = Mooy = Aspzr = C,
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Mpr = (Xi— Xz)jo = Nonis
= Mimr = Asnr = Aoz = Asppr = D,
Mrir = (3Xy+ Xo)RipRor = Aoror = Asrsr
= Aipor = Nopir = Aopsr = Aspor =
Mrsr = 3(Xy— Xo)RipRor = Aspir =G (76)
We rewrite these components as

= 3(3X; + Xo)Rip,

9X, — X,
B = (9Xi—Xo)Rip=--c——-A=74
(91 = Xo)Fip 33X, + Xo)
C — (Xl + 3X2)R§I7
X, — X,
D = (X;—X))R:, =— =0 =uwC
(Xy = Xo) By X, 13X, %
E = (3X,+ Xy)RirRyr,
3(X, — Xy)
G = 3(X,—X))RpRoyy = —— "2 F — ¢F
( 1 2) 1R{t2r 3X; + X, €L,
where
9X, — X, X, — X, 3(X; — Xo)
v = =

—_— W= —————, €= ———————.
3(3X1 + X») X1+ 3X, 3X1 + Xy
Owing to the rotational symmetry, the row and column that contain R;; can be omitted.

We call this matrix A again,

1R 2R 3R 2I 3I

IR{ A ~A ~A FE €F

2Rl 7vA A ~A FE FE

A= 3R|vA vA A FE E
2l £ FEF FEF C wC

3l \eE FEF E wC C(C

We solve the eigenvalue problem of the reduced matrix,

A=) ~HA ~A E el

yA  A—-X ~HA E E
A= M| = ~A ~yA A=) E E
E E E C—-—\ wC

el F FE wC  C =)
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= AL - y) A}

We put r = §—f In addition, C' is expressed by A and FE as
3(X1 + 3X,)E?

C :
(3X, + Xo)A
Therefore, |A — AI| becomes
IA=X| = —27*—A(1l—7)+ A} x
r r 2(94r
0 2 ?jgir)A A ?fl—rE (3“1‘7’)E
2(9+4r)
—2(5dA-0) 2(35ma - 0 AE
4r (147r)E?
274 g 4E 0 2(S 2
—4r 12rE?
23+rE 0 2((3+r) o )‘) 0
L (—128)
= 27 -A(l—7)+ A} x G T)4E X
0 (27 + 1) — 4rvA 1 9+ r
L—ovX 2(9+7)—4rvA 0 23+ ) (77)
3 6(3+7) 0 6(1+7)—2rzA
3 0 —6 4 zA 0

From the coefficient of the determinant, the first eigenvalue is obtained as
M o= Al —7v) =4XyRi, < 0.

It is proved that the determinant is equal to 0 when A = 0 is substituted. Thus, the
fourth-order polynomial of A\, Eq. (77), has a factor A. Thus, by dividing the polynomial

by 2\, we obtain the following cubic equation:
420222\ — rvz(120 4 5rz + 272 + 361v)\?

+ (27r2% 4 240rvz + 1222 + 72r%0® + 72rv? + 24r%0vz)\

—432rv — 120rz = 0. (78)
We calculate v and z as
33 +r) 2 z_(3+r)A_ 12
A (E2-EDX, T 2rE? 0 (983 -E9)X,

0 2{A(1 4+ 2v) — A} E(1—¢) E( +e)
—2{A(1 =)= A} 2{A(1+7~)— A} 0 4F
2E(e — 1) 4F 0 2{C(1+w) —
2E(c — 1) 0 2{—C(1 —w) + A} 0

A}
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Dividing Eq. (78) by 4r?v%2?%, we obtain
FO) =X+ a\? + )\ +ap =0,
where

o = (@ - =)7X, +5x) 120 - 2 (X, +3X) )
o = o XS - EDU2TX + Xa) + 2Xa(95F — EA(X + Xa)

4 A4X,(22 — 22)(922 — 22)(10X, + X2)},
1

w = ~pXXHE - T - SIS + ).

Since the eigenvalues of a real symmetric matrix are real numbers, the solutions of
f(A) = 0 should be real numbers. This means that f(A) = 0 has three real solutions.
Furthermore, f’(A) = 0 should have two real solutions. Now, we show that the function
f(A) has three negative real solutions.

From the relations X; < 0, Z; > =5, and Z; < 3Z,, the coefficients ag, a;, as are all
positive. Let & and n (£ < 1) be two real solutions of f’(A) = 0. The conditions that

f(A) = 0 has three negative real solutions are the following:
1. f(0) >0, 2.7<0.

We investigate these conditions.
1. Since f(0) = ag and ag > 0, f(0) > 0 follows.
2. The first derivative of f(\) becomes

f'(A) =32\ 4 2a3\ +a; = 0. (79)

Since it has two real solutions, a3 — 3a; > 0 follows. Then, the solutions of Eq. (79), £
and 7, are
(- Em
3 )
Since a; > 0 and ay > 0, n < 0 follows.

_ —ay+ /a3 — 3a
— ; ,

Therefore, A has one zero and four negative eigenvalues. Thus, the Hessian matrix
in the CA has zero (2-fold) and four positive eigenvalues. Therefore, this implies that
the free energy of the CA has the shape of a valley and the CA is stable.

Symmetric mixed solution: S,
We consider the case of p = 3. We assume R;; = 0 from the rotational symmetry. In

addition, we assume Ro; = R3; = 0. Then, we obtain Ry = Ry, = R3. In Appendix D, it
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is proved that R1gp = Ror = R3p is a solution but there is no solution in which one or
more of the signs of Rig, Rogr, and R3g are reversed. Below, we assume Rigp = Rop =

R3r > 0. The values of u;, Rz, Ry, and R are

1 4
Uy = U3IU4:1_a(/B—J—3<1+3a)U1),
X T2 I
Rip = L =2 _Ryp=Ryp R= .
1R 3ﬁ<] BJ 2R 3R \/gﬁJ

x1 is determined by Eq. (D-84). See Appendix D for details.

The values of ¢, and c,, are

3 1
CMM:E_2(1+3G)U1’ C“”:_ﬁ_J+(1+3a)u1’ (1 # v).

Then, we obtain
—2+4+2(1+3a)BJuy, (n=v),
1 — (14 3a)BJuy, (u#v).

In the symmetric mixed solution Sy, we have us = us = uyg, 1 = 3x9 = 313 = 3x4. The

O — By =

components of the Hessian matrix are calculated as

1+ 3au'(xy) 1 —au(xs)
9 3})
8 I + 8 ) }

T 2JN(—1 + (14 3a)8Jus — (B R

= Homr = A,

1+ 3au/(x1)9 1= au’(x2)3}>
8 T 8 T

Mipor = JN(1 — (14 3a)BJur — 2(8J)* R
= Hirsr = Horsr = B,

Hipy = JN<—2 (1 + 3a)6Ju1> = Horar = Hapsr = C,

Hipr = JN<1 1+ 3a)BJu1> = Hurss = Horzr = D,

u' ()
X

op
Hupr = IN(=(80)" Y P20l GnGir ) = 0
=1

- HZRQI = H3R3I = HlRQI = H1R3I = HZRBL
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Thus, H is expressed as

IR 2R 3R 1I 2I 3I
IR{ A B
2R| B
3R| B
17| 0
21 O
31 \ 0

o o o W o

B 0 0 O
B 0 0 O
A 0 0 O
0 C D D
0O D C D
0 D D C

The characteristic equation of an n x n matrix with the diagonal components A and

the other components B is
{A-A+(n—-1DBYA-X-B)"! = 0.

Thus, we obtain the six eigenvalues of H as
A=A+2B, A— B (2-fold), C 4+ 2D, C — D (2-fold).

Let us study the signs of these eigenvalues. A + 2B becomes

A+2B = 2IN(-1+ (L4 30T — LEDPE(+ 30 o 4 (-0 T2y
1= (1305 - 2GR0+ 300 1 (- 2y

Since J > 0, N > 0,2; > 0,0 < a < 1, and the function u; decreases monotonically, i.e.,

u; < 0, we obtain A+ 2B > 0. We find that

C+2D = 2JN{-1+ (1+3a)BJus+ 1~ (1+3a)BJus} = 0.
A— B =C — D is proved as
2 / /
A-B = JN<_2+2(1+3Q)5JU1—g(ﬁj)3Rf{(1+3a)ufcxl)9+(1—a)u;@)?)}
1 2

—1+ (1+30)B.Ju; + %(ﬁJ)?’Rf{(l 130) g 4 (1~ ) “'<‘”2>3}>

I i)
- 3JN(—1 1+ 3@)6Ju1>
- C-D.

Thus, the sign of A — B determines the stability of S;. That is, if this is positive, the
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solution is stable. The condition for this is

We define ¢(T") = u(z(T")) — y(T') and y(T")

equivalent to

= (H%)J Then, the above condition is

9(T) > 0. (80)

(S1)_ (14+2a)7
2

The critical point for Sy is Tt . Thus, we obtain

14 2a 1
Ty = 122
W) = 5030y < 2
Since x1( TC(S4)):O, we obtain wu(z( TC(S4)):1/2. Therefore, we obtain g( TC(S4)) > 0.

x1(T') is determined by the following equation [Eq. (54)]:

— = —(1 T —(1— . 1
= 2 saunm) + 10— au(™T) (81)
The derivative ) (T') is calculated as
12
7(T)

{9(1 + 3a)u! (21 (T)) + (1 — a)u/ (22) )T
Since v’ < 0, we obtain x}(T") < 0. The derivative ¢'(T') is

g(T) = (@ (T)2\(T) —y'(T)
12 1

(14 3a)J

u/(xl(T))

Let us consider the limit 7" — 0. As 7' — 0, L.H.S. of Eq. (81) — 0, and this implies
that u(z1(7T")) — 0 as T — 0. Thus, g(+0) = 0. Since we have z;(T") > 1 when T ~ 0,

we obtain u(z) ~ 1. The derivative «/(z) is estimated for z > 1 as

Thus, we obtain for T" ~ 0

o (T N 12 2
e ta() (9(1+3a) + (1— )21y 3(1+a)J

Therefore, when T" — 0, we have

, R |
90 = a7 T Trsa))

3a—1
T 31 +a)(l+3a)] (82)

(a) Case of a < 3
In this case, from Eq. (82), ¢’(+0) < 0 follows. Since g(+0) = 0, we obtain g(7") < 0
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for 0 < T < 1. Since g(TC(S4)) > 0, there is T that satisfies g(7') = 0 in (0, TC(S“)). We

write this temperature as 7. That is, u(zy(T)) = (H%)J at T, and this is simply the

equation for u; of the CA; see Eq. (48). In addition, for the symmetric mixed solution

S4, from Eqs. (52)-(54), we obtain

1 47T
Uy = U3 =Uy = 1—a(7 —3(1+3a)u1). (83)
Substituting 7 = T in Eq. (83), we have
. T
Ty = ———. 84
u2< ) (1 — CL)J ( )

This is the equation to be satisfied for us = ug = ugz of the CA, Eq. (49). Moreover,

for Sy, we have the condition x1 = 3x5. Thus, T satisfies the conditions for the critical

temperature TNof the CA. Since T\“Vis unique, we obtain T = TN, Thus, we
obtain ¢(T') < 0 for T <T{and g(T) > 0 for T ST Therefore, Sy is stable

for TC(CA)< T < TC(S“). Furthermore, we find that S; and the CA do not coexist. Sy is

stabilized when the CA ceases to exist.

(b) Case of a > 3

In this case, since ¢’(+0) > 0 and g(+0) = 0, we obtain ¢g(7) > 0 for 0 < T < 1. As
discussed in the above case, if g(T') = 0, this temperature is the critical temperature
of the CA. However, for a > %, the CA does not exist. Therefore, g(T') # 0 for 0 <
T <759 Since g(TC(S“)) >0, g > 0 holds for T' < TS5 Thus, the solution S, is always

stable as long as it exists.

In Fig. 4, we show the graph of the functions u(z1(7")) and y(7') in case (a).

Fig. 4. Functions u(x1(T)) and y(T').
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5. Numerical results

We perform MCMCs. We set J = 1 in all simulations.

5.1 Phase diagram in (a,T) plane

In Fig. 3, we displayed the phase diagram in the (a,T') plane. We performed MCMCs
with N = 20000. The numerical method used to obtain stationary states is as follows.
As an initial condition, we take £!, and add a perturbation —h Zjvzl cos(p; — <bjl) with
h = 0.005 to the Hamiltonian H in Eq. (1). Here, ¢} is defined by & = el for
uw=1,2--- p. After the system settles to a stationary state, we identify the state as
follows:
Para: |R; — Ry| < 0.02, |R; — Rs| < 0.02, and Ry < 0.05.
Sa: |R1 — Ry] < 0.02, |Ry — R3] < 0.02, and R; > 0.05.
CA: Ry is greater than Ry by more than 0.02. In order to confirm that the final state
obtained numerically is really the CA state, we change the perturbation to a new
perturbation, —h Zjvzl cos(¢; — ¢3) with b = 0.005, add it to the final state, and check
that the new final state satisfies Ry — R; > 0.02.

As seen from Fig. 3, the theoretical and numerical results agree reasonably well.

5.2 Temperature dependences of order parameters

First of all, we show theoretical and numerical results of the temperature dependence
of the order parameter R in Fig. 5 for a = 0 and in Fig. 6 for a = 0.1. In the numerical
simulations, NV is set to 10?, and the total number of Monte Carlo sweeps (MC sweeps)
is 10%. Here, one MC sweep corresponds to N updates of the XY spins. We took the
average during the last 5000 MC sweeps. Furthermore, we took the sample average over
50 samples. We display the average and the standard deviation for R, but the latter is

too small to observe. The theoretical and numerical results agree reasonably well.
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5.8  Mazimum number of patterns for which the CA exists

Next, we study the maximum number of patterns p,. for which the CA exists. The-
oretically, as long as the self-averaging property holds, p. can take any value for a = 0,
Whereaspc:3for0<a<%andpc:Qfora>é.

We perform MCMCs for N = 4000 and 8000 and 7" = 0.1. We draw R, from 0
to 20000 MC sweeps at intervals of 100 MC sweeps. We set the initial configuration
as the CA in order to reduce the time to reach the CA when it exists. We used the
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following criterion to judge whether the resultant solution is the CA. From 10% to
20000 MC sweeps, at every MC sweep we selected the largest and second largest values
of {R,}, say, R™" and R*. We defined AR = R"' — R?™ and calculated the standard
deviation of AR, or. We took 10 samples, and obtained 10 or. We selected the largest

one among the op, say, op™*. If o™ exceeded some value, o, we judged that the CA

exists. Empirically, 0* = 0.1 gave reasonable results.

Case of a =0

We show the numerical results in Fig. 7 for NV = 8000. It seems that the CA exists until

p = 36. Let us study the condition for the existence of the CA for finite N. In finite-size

(a) (b) (©) (@

Fig. 7. Time series of R,s. a = 0, N = 8000. mcs denotes Monte Carlo sweeps. (a) p = 25, (b)
p=231, (c) p=35, (d) p=36.

systems, in order that the self-averaging property holds, 27 < N should be satisfied.
Thus, the critical p. for the number of spins N is estimated from 2P¢ ~ N. Thus,
Do R ﬁ In N. When N = 4000 and 8000, ﬁln]\f ~ 12 and 13, respectively. These
estimates are consistent with the numerical results of p. ~ 20 and 30, respectively.
Case of a > 0

We perform MCMCs for a = 0.1. Numerical results are shown in Fig. 8 for N = 8000.
Note that the CA exists only for p = 2 and 3 as the theory predicts.

5.4 Addition of noise to patterns

When a > 0, we theoretically and numerically found that the CA exists only for
p = 2 and 3, although when a = 0, p, can take any value as long as the self-averaging
property holds theoretically, and p. ~ In N numerically. In realistic situations, there
is external noise. Therefore, we study the case that patterns are subject to external
noise when a > 0. It is expected that we can produce similar situations to the case of

a = 0 and make the CA reappear by the addition of noise because noise reduces the
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correlation among patterns.

Noise is introduced in such a way that the sign of each pattern &! is reversed with
some probability, say A. Then, for 0 < A < 1, the substantial correlation a’ between any
two patterns becomes @’ = (1 —2X)%a for A < 1 and @’ = —(1 — 2))%a for A > 1. Thus,
as A — %, a’ — 0. Fixing ¢« = 0.1 and T = 0.1, we performed MCMCs for N = 8000
and for several values of p and A\. We set the initial configuration at random.

We took 10 samples, calculated the standard deviation og, and determined the

max

maximum of or, o™, as before. We show the time series of R, for the sample with

max

op™ in Figs. 9-11. We find that p. increases from 3 as A increases as expected. For

example, p. is 4, 4, and 6 for A = 0.2,0.25, and 0.3, respectively.
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6. Summary and Discussion

We have analyzed the classical XY model with the associative-memory-type inter-
action for the case that N > 1 and the self-averaging property holds, with and without
the correlation a between any two patterns.

Firstly, we summarize the theoretical results. In Table III, we list the stable solutions.

a=0 ‘ a>0
p =2 | Continuous attractor (T’ < ) Continuous attractor (T' < - a)])
Memory pattern (7' < %) Symmetric mixed solution S; ((1 J) -7 < (HG)J)
p =3 | Continuous attractor (T’ < %) Continuous attractor (T' < TC(CA))
Memory pattern (T' < %) Symmetric mixed solution Sy (TC(CA)< T < %)

Table III: Stable solutions for p = 2 and 3.

For general p, we studied the condition for the existence of the CA. When a = 0, the
CA exists for any p and is stable as long as it exists. Among the overlaps with memory
patterns, {R,}, only two are nonzero. The critical temperature is TN = % for any p.
Since memory patterns are located at both ends of the CA, their stabilities are the same
as that of the CA. On the other hand, when a > 0, the CA exists only when p = 2 and
3. The reason for this is that the number of conditions becomes larger than the number
of independent variables for p > 4. The CA exists and is stable for T" <T. (CA)(: %)
when p = 2. The symmetrlc mixed solution S; exists for 7" < T(S4)( H“ J). It is
unstable for 0 < 7 <7 ““and becomes stable when the CA disappears. That is, a
coexistence region of the CA and the symmetric mixed solution S; does not exist.
When p = 3, the CA exists and is stable below TC(CA), which is determined by x; = 3z,.
A pure memory pattern does not exist when a # 0, but its modified version appears at
both ends of the CA. The symmetric mixed solution Sy exists for 1" < TC(S4)(: %J ).
It is unstable for 0 < T < T.““and becomes stable when the CA disappears. That is, a
coexistence region of the CA and the symmetric mixed solution S; does not exist as in
the case of p = 2. For p = 2 and 3 and for both a = 0 and a > 0, several other solutions
exist but all of them are unstable.

Secondly, we summarize the numerical results. We performed MCMCs and calcu-
lated the critical number of patterns p. until which the CA exists. When a = 0, the CA
exists until p. ~ 20 and ~ 30 for N = 4000 and 8000, respectively. Theoretically, the

CA exists and is stable for any p as long as the self-averaging property holds. The reason
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for this disagreement is considered to be due to the breakdown of the self-averaging in
the finite size system. We estimated p, for finite N as p. ~ In N/In 2 and we found that
this is consistent with numerical results. On the other hand, when a > 0, the CA exists
until p. = 3 for N = 8000. This result completely agreed with the theoretical result.
Furthermore, for a > 0, we added external noise to the components of patterns, because
we expected that the correlation between patterns would be weakened by the addition
of noise to patterns. By MCMCs, we found that p. increases from 3 as the probability
A that each component is reversed increases as expected.

Now, let us consider the meaning of the existence of the CA when the present model
is regarded as an associative memory model. In real brains, after a memory is retrieved,
another memory is sometimes spontaneously retrieved without any stimulation, or when
an external stimulus is applied, a memory that is related to the stimulus is retrieved.
That is, it seems that many memories in a real brain are “connected” in a sense. Such
phenomena do not take place for models that have only point attractors such as models
composed of the Ising spins. On the other hand, in the present model, the CA exists
between any two embedded patterns. Thus, after a pattern &* is retrieved, another
pattern can be retrieved spontaneously. Moreover, if an external stimulus that lies on
a path from pattern " to pattern £” is added, pattern £” is retrieved. That is, the CA
is considered to be able to realize the feature of real brains mentioned above.

Finally, we list several future problems. The first is to examine the system size N
dependence of the critical number of patterns p. for a = 0. Extensive theoretical and
numerical studies are necessary. The second is the theoretical analysis of the effects of
adding external noise for a > 0 in order to make the CA reappear. The third one is to
extend the present study to the case that patterns are divided into clusters in such a
way that patterns in any cluster are correlated but those in two different clusters are

not correlated.
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Appendix A: Derivation of Free Energy and Saddle Point Equations

The associative memory interaction is expressed as

J p
Ji; = NZ@H " (A-1)

N
1
R = 52 gfeonts a2)
1 N

The Hamiltonian of the classical XY model is

H = _ZJinZ"Xj (A-4)
= S (A (R + 2 (A5

In order to analyze the XY model by the method of statistical mechanics, we in-
troduce the temperature T and calculate the partition function Z. We put kg = 1, so

b= % The partition function Z is expressed as

2
7 - / 0™ s (R (Rt} (A6)
0
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where fo% dd = fOZW dgy - -+ OZW d¢y. By the HubbardStratonovich—transformation, we

obtain

2p
7= e3P fo% do [dyl---dyrdy!-- ~dy§<\ / NQ—i‘]) el (A7)

where we define

o= TS (e )+w§X%Zﬁw%+%Zﬁm%)

pn=1 p=1 j=1

(A-8)
By performing integration with respect to ¢1, -+ , ¢y, we obtain
z = C [yl it dye”
2 .
Nf = ln/ ddel (A-9)
0

NBJ al
= Z{ v+ (7Y + ) In(2rLy(BIE)), (A-10)

j=1

2y = | Q&)+ (Y&, (A-11)
p=1 p=1

2p
where the constant C' = (\ / A;—ff) e~3? is of order 1 and N f is of order N. Since we
consider the case N > 1, we evaluate Z by the saddle point method.

7~ CeNT(@Wd) W) o) (W) wE)") _ uNI*

Here, (y#)*, (y#)* is the saddle point of f, and f* is the value of f at the saddle point.

Therefore, the free energy becomes

F = —%an ~ —%Nf*.
By using (A-9), we calculate gy@ =0 and gy@ =0 as
| XN
(ve)" = (Bugr) = N ZS;‘(cos di), (A-12)
i=1
1 XN
(We) = (Bur) =5 > &'{sinei), (A-13)
i=1
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[ eH Add . . . .
where (A) = }2”71%@' By performing the integration, we obtain
0 e
L(BJE;) 1
R = E E el — () A-14
< MR> N _1 — [0 /BJ’_‘ g gj E] (yc) ? ( )
_ § : § : [1 BJ“J 7
<R,UJ> - NJ < £ 1[0 /BJ’_‘ gg r—~< ) . <A15>

Hereafter, we write (R,g) and (R,;) as R,z and R,;, respectively, for simplicity. Then,

the SPEs are

=

1 L(8Z)
R = — E E = “ —Rug, A-16
N p
1 ZZA (BIE)) .4
= e V . A‘l
RM NJ:11/21 IO BJH 65 H‘ ! ( 7)
From Eq. (A-10), the free energy is
N
NJ 1
F = TRQ_BE In(271o(BJZ;))
j=1

where

B = Zfﬂ’w Z&RM

Now, we define the average of all {}'} as [A({¢"})]. By the self-averaging property, we

obtain
1 o " 7
7 2 AUED = [AeD)],

Then, the free energy and SPEs are rewritten as

N N
R,uR = BJ Z C,U«I/RI/Ra ) <A19)
v=1
p
Ry = 5JZ cuwRur,, (4-20)
G = [ula)ee]. (A2
where z; = 8JE; and u(z;) = %
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Appendix B: Properties of the Function u(x)

We describe the properties of u(z) = JCI}O((%. The modified Bessel function of the

first kind I,(z) is defined for the complex number z and the real number v, which is

an analytic function of z, and when z is real, the function is real. We use the following

formula for 1,,(z):?

() L) = =) (B-1)
L)L) = % /0 * L (22 cos ) cos{ (1 — )8} 6. (B:2)

Re(p+v) > -—1.

When v is an integer n, I,(z) is expressed as follows:

I(z) = l/We“‘)s‘bcos(m;ﬁ)d(b.
0

™

In this case, I,(z) > 0 for # > 0, Iy(0) = 1, and 1,(0) = 0 (n > 0). u(z) = 2 ig
C* for any real value x, and u(0) = % follows. We put n =1, v =1, and z = z in Eq.

(B-1) and obtain

d -1 - -1
_da:(x Li(x)) = z  Lx).
Thus,
d 1 2
w@ = @) - L@?), (B-3)

Subtracting Eq. (B-2) with = 1,v =1, and z = 2 > 0 from that with p =2, v =0,
and z = x > 0, we obtain

L(x)Iy(z) — I(2)* = %/02 I,(2x cos ) {cos(20) — 1}db.

For z > 0, 2z cosf is greater than or equal to zero in the range of integration. Then
I(2x cosf) > 0, and the integral is negative. Thus, u/(z) < 0 for x > 0. By the saddle
point method, the asymptotic form for z > 1 is

1 [ 2
I,(z) =~ %/ em(l’%)d¢:ex

Therefore, for x > 1 we obtain

1
V2w '

(B-4)

When = — oo, u(z) — 0.
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Appendix C: Proof of Relations for {n}'}

We denote the value of £ in the Ith sublattice as )’ ) when the number of patterns

is p (> 2). Firstly, we summarize the relations among 7’ (v,
=1, (p=2,1=1,---,2"7Y), (C-1)
e == (p= 2= 2 =1, p), (C-2)
g =g (p =20 =1, 2 p =2, p). (C-3)

We show these relations in the cases of p = 2 and 3 in Fig. C-1.

(2) 2.2 1,(3) _2(3) _ 3.(3)
?hl( : n @ moomn m
=1 1 1) =1 1f 1 1
=21 1 -1 1=2 1| 1 -1
1=31-1 -1 1=3 1]-1 -1
1=al-1 1 1=4 1]|-1 1
w w

Fig. C-1. Relations among nf"(z) and nf"(g).
The following relation is derived from Eq. (C-2):
9P
>ow'” =0 (C-4)
1=1
Let us prove the following;:

2p—1

an7(p) = 07 (p:2737"')7 (:u:2737 7p)' (05)

1=1

In the case of p = 2, this is obvious from Fig. C-1. For general p > 3 and p # 1, the
left-hand side of Eq. (C-5) becomes

2p—1 2p—1 2p—2 2p—2

, —1,(p—1 —1,(p—1 —1,(p—1
Do =D =y Ty T (C6)
=1 =1 =1 =1

From Eq. (C-2), it becomes zero. By using these relations, we prove the equations used
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in the main text by the inductive method.
Proof of Eq. (33)
From Eq. (C-2), Eq. (33) can be written as

Z Py @ = org, (C-7)

When p = v, this is trivial. Thus, let us study the case of v # v.
(i) Case of p =2
From Fig. C-1, we obtain

L.HES. Znu (2), 1(2) _ 77? (2)77114(2) + 772 (2 )772” +(2) + ,r]g (2)773( ) + 774 1:(2) V(2 =(@-8)

Thus, Eq. (C-7) is proved.
(ii) Case of p=m (> 2)

We assume the following:

Zn“ e =0, (u# v). (C9)
For p =m + 1, let us prove the following:
2m+1
> gt =0, (£ ). (C-10)
=1

It is necessary to consider the case that p or v is equal to 1 and the case that p and v
are not equal to 1.

(ii)-(a) The case that p and v are not equal to 1

an’(mH) (tr#1,1=1,---,2™) is equal to an_l’(m). Thus, by Egs. (C-2), (C-3), and
(C-9), we have

L.H.S. of Eq. (C-10) = Qan (e — g N " g blmlyr i) — g,

(ii)-(b) The case that p or v is equal to 1
We assume p = 1 without loss of generality. By definition, we have
1,(m+1 1,(m+1 m
nl(+) nlJr(2m+):].7 (l:].,,Q )
Since v > 1, from Egs. (C-2) and (C-5) we have
2m
L.HS. of Eq. (C-10) = 2an ) = 12y gt <o,

=1

This completes the proof.
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Proof of Eq. (70)
Let us prove Eq. (70),

-1

S b 27 ()= (12) or (21),
mnmn =

=1 0, other cases.

From Eq. (C-2), this is also expressed as follows:

, 2P (u,v) =(1,2) or (2,1),
> nfnining = (C-11)

0, other cases.
When p = v, this holds from Eq. (C-7). We next prove Eq. (C-11).
(i) Case of p =2
From Fig. C-1,

LHS. of Eq. (C11) = Zn“@ R

v, (2 v,(2 2,(2
= 775(2)771()771()771()+772()772()772()772()

v,(2 2,(2 2) v, 1
+773()773()"73()773()"‘775()774()774()774()

4 (u,v) =(1,2) or (2,1)
0 w=v
= R.H.S. of Eq. (C-11).
Therefore, Eq. (C-11) holds.
(i) Case of p=m (> 2)
We assume that Eq. (C-11) is true,

2m
2m (1, v)
p,(m) v (m) 1,(m) _2,(m) ’ )
E Ui Ui Ui Ui =
— : : l l 0, other cases.

=(1,2) or (2,1),

Let us prove the following:

2m+1

2mt (n,v) = (1
(m+1) v,(m+1) 1,(m+1) 2,(m+1 ) )
an ! un +)771(+)771(+) = (1&12
0, other cases.

When p # v, it is necessary to consider the case that u or v is equal to 1 and the case
that ;1 and v are not equal to 1.

(ii)-(a) The case that both p and v are not equal to 1
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The left-hand side of Eq. (C-12) is calculated as
L.H.S. of Eq. (C12) = 2277# J(m+1) 0 m+1)?711,(m+1)?712,(m+1).

1,(m+1) T,(m+1)

=1 and 7, 77;’ ™ for T > 2, it is rewritten as

l/ 1,( 1,(m
2277 Y )771( .

Furthermore, we decompose the sum using Eq. (C-2),

For [ < 2™ using 7,

2m71

-1, v—1,( —-1,(m) v—1, 1,(m
= 2[2775 o ™ Z R )}
=1 [=2m—141
om—1 om—1

—1,(m) v—1,(m) 1,(m —1,(m) v—1,(m) 1,(m
= 2[2771“ D D A ()m()}ZU-
=1 =1

In the present case, the R.H.S. of Eq. (C-12) is zero and Eq. (C-12) holds.
(ii)-(b) The case that p or v is equal to 1

We assume p = 1 without loss of generality,

2m+1

LHW“@WWZZZmWHmWWW%W”

2m+1

{1 Z n J(m+1) l2(m+1).
By using Eq. (C-7), we find that the above equation becomes 2™*1§, ,. Therefore,
2L () = (1,2),
0, w=1v+#172.

This completes the proof.

Appendix D: Derivation of All Solutions of the SPEs for p < 3
D.1 Case of p=2

Because of the rotational symmetry, R;; = 0 is assumed. There are three variables,
Ry, Rogr, and Ryy. Without loss of generality, hereafter we assume Ryg > 0. When
p = 2, the probability P, is

l1+a
Pl = P3: 4 9
1—a
P2 == P4: 4 .
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By definition, ¢, and =7 are

cii = 2Puy + 2Pyus = coo, (D-1)
clo = 2Py — 2Pus = ¢y, (D-2)
Z2 = R?+42RigRyp, (D-3)
=5 = R?—2RigRyp. (D-4)
The SPEs are
Rip = BJ(enlir + ci2Ror), (D-5)
Rop = BJ(ciaRar + ciRar), (D-6)
Ry = [BJ(ciiRir + c1aRay), (D7)
Ryr = f[J(c1aRi + i1 Rop). (D-8)

I. Ry = 0. Memory pattern: M

From the above equations, =1 = =, = R, fJci; = 1, and ¢12 = 0 follow. From these,
1 = 9 and u; = us follow. Thus, from ¢;o = 0, P, = P, is derived. Thus, the memory
pattern exists only for a = 0. The critical temperature is obtained from u;(0) =
that is, T8"= 2. Therefore, Egs. (37)-(39) in the main text follow.

II. Ry; # 0. Continuous attractor: CA

From Eq. (D-8), ¢11 = ﬁ% follows. Substituting this into Eq. (D-6), because Ry # 0,
c12 = 0 follows. Using these relations, from Eqs. (D-1) and (D-2), we obtain Piu; = Pyus

L
BJ’

and
-t (D-9)
YT U asl
1
= — D-1
T G- an) (D-10)
From Egs. (D-3) and (D-4), we obtain
= +E = 2R

Therefore,

R_\/E%JrE%_\/x%er% D1
== _ (D-11)
2 V28T

If a =0, u; = uy and x; = x5 follow. Thus, R = % = Z;. From Eq. (D-3), we obtain
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RirRor = 0. Since R1gr > 0, Ror = 0 follows. Therefore,
R®* =R, + R3;.

Thus, either Rig or Rs; can freely change, that is, this solution is a one-parameter
family. Therefore, it is a continuous solution. Next, we consider the case of a # 0. From

Egs. (D-3) and (D-4), Rog is expressed as

From the definition of R, Ry is
R%I = R* — R%R - R%R'

Thus, Rog and Ry are functions of Riz. From the condition R%;, > 0, we obtain
= ; =2 < Rig < = ; =2 (D-12)

Since this solution is a one-parameter family, it is a continuous solution. The critical
TN _ (-a)

temperature is determined by us(0) = m That is, = .
II1. Ry # 0, Ryy = 0

Because Rip and Ryp # 0, from Egs. (D-5) and (D-6), we obtain

{BJ(ci1 +c12) = 1H{BJ(c11 —c12) =1} = 0.

We study the two cases of A J(c11 + ¢12) = 1 and B fJ(¢11 — ¢12) = 1 separately.
III-A. Case of BJ(c11 + c12) =1
By adding Egs. (D-1) and (D-2), we obtain ¢i; + ¢12 = 4Pyu;. Thus, we have
1
= — D-13
YT Ut apl (D-13)

From this, z; is determined. By using SJ(c11 + ¢12) = 1, Eq. (D-5) becomes
012(R1R - R2R) = 0.

We study the two cases of A-1 ¢;5 = 0 and A-2 Rz = Ryr separately.

ITI-A-1. ¢ = 0. Continuous attractor: CA

From Eq. (D-5), we obtain ¢1; = BLJ Therefore, we have two conditions, ¢y = BLJ and
c12 = 0, as in case II. Thus, this is the continuous solution and Eqs. (D-9) and (D-10)

hold. In this case, we have
R* = Rip + R3p. (D-14)

ITI-A-2. Rigr = Ror. Symmetric mixed solution: S;
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Since Ri; = Ry; = 0, we obtain

T I
R pu— R pu— —’ R pu— . D'15
' * 287 V287 (D-15)
From these relations, zo = 0, us = 3, and Eq. (43) follow. From Eq. (D-13), the critical
temperature is 7.5 = %
I11-B. 6J(011 - 012) =1.
From Egs. (D-1) and (D-2), we obtain ¢;; — ¢ = 4Paus. Thus, we have
1
R Y (D-16)
By using 8J(c11 — c12) = 1, Eq. (D-5) becomes
ci2(Rir + Rog) = 0.
We study the two cases of B-1 ¢15 = 0 and B-2 Rjg = — Rsp separately.
ITI-B-1. ¢;3 = 0. Continuous attractor
Since ¢;; = BLJ follows, this is the CA.
I1I-B-2. Rir = —Ryr. Symmetric mixed solution: S,
Since Rig = —Rsr and Ry = Roy = 0, we obtain
R* = R+ R;=2R}. (D-17)
From Egs. (D-3) and (D-4), we obtain
=2 = R’-2R;=0, (D-18)
=5 = R’+2R;=2R%. (D-19)
Thus, 1 = 0 because =; = g—f] Thus, u; = 1/2. Therefore,
)
R = —/—, D-20
NI (D-20)
o)
= R (D21)

The critical point is TC(SQ): %

D.2 Case of p=3

Because of the rotational symmetry, Ry; = 0 is assumed. There are five variables,

Rigr, RoR, Ror, R3r, and R3;. Hereafter, we assume Ryp > 0 without loss of generality.
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When p = 3, the probability B is

143
Pl = +a:P57
8
1_
P, = Sa:P3:P4:P6:P7:P8.

From the definition of ¢, and =;, we obtain

c1n = 2Puy + 2Py (ug + ug + uy) = g = C33, (D-22)
c12 = 2Puy 4+ 2Py(ug — uz — uyg) = co, (D-23)
c13 = 2Puy 4+ 2Py (—ug — usz + uyg) = c31, (D-24)
Co3 = 2Puy 4+ 2Py(—ug + uz — uyg) = c39, (D-25)
E7 o= R*+4+2d 2V +20, (D-26)
=2 = R?+2d —20 —2c, (D-27)
Z5 = R*—2d -2V +2¢, (D-28)
=5 = R*—2d +20 —-2¢, (D-29)
where
a = RipRer + RisRoy, (D-30)
V' = RigrRsr+ RiRsp, (D-31)
¢ = RypR3r+ RorRs;. (D-32)
The SPEs become
Rir = BJ(cuBRir + ciaRor + c13R3g), (D-33)
Rop = BJ(cioBir + c11Rar + c3Rsr), (D-34)
Rsp = BJ(cisBir + ca3lar + c11R3r), (D-35)
Ry = 0, (D-36)
Ror = BJ(cuiRor + casRsp), (D-37)
Ry = BJ(cosRar + 11 Rar). (D-38)
I. (Rs, R3) = (0,0). Memory pattern: M
From the SPEs, ¢;; = 6_1J and ci9 = ¢;3 = 0 follow. Since o/ =V = =0,Z, ==, =

Z3 =24 = R, uy = uy = u3z = uy, and co3 = 0 follow. Thus, the memory pattern exists

48/62



J. Phys. Soc. Jpn.

only for a = 0 and Egs. (46) and (47) are derived. The critical temperature is TM = z.
II. (Ror, Rsr) # (0,0)
From Eqs. (D-37) and (D-38), we obtain
(1 — ﬁJC11)2 — (—6J023>2 = 0, (D39)
{6J<Cll + 023) — 1}{/8J(011 — 023) — 1} = 0. (D40)
Since Ryr > 0, from Egs. (D-33)-(D-35) and Eq. (D-39), we obtain
—(ﬁJCH — ].)(C%Q + 033) + 25]012013023 =0. (D41)
We study the two cases of A J(c11 + c23) = 1 and B SJ(¢11 — ¢o3) = 1 separately.
II-A. BJ(CH -+ 023) = 1.
By using 8J(c11 + ¢23) = 1, Eq. (D-41) becomes
cs(c12 + c13)* = 0. (D-42)

We study the two cases of A-1 co3 = 0 and A-2 c93 # 0 separately.
II-A-1. ¢33 = 0. Continuous attractor: CA
From Egs. (D-37) and (D-38), we obtain ¢;; = 6_1J From Egs. (D-34) and (D-35), we

obtain c¢;s = ¢13 = 0. From c¢19 = ¢13 = 3 = 0, we obtain us = us = uy and
Piuy = Pyusy. From Eq. (D-22), we obtain 8 Pju; = ¢17. Since ¢q; = é, we obtain
1 1
fry = D'43
“ 8PBJ  (1+3a)8J (D-43)
P 1
= U =-—. D-44
2 BT 1—a)p] (D-44)

From Egs. (D-43) and (D-44), 27 and x5 = x5 = x4 are uniquely determined. From the
relation x; = fJZ;, Z; is determined. From Egs. (D-27)-(D-29), we obtain ¢’ = b = ¢'.

Thus, we have

=2 = R*+6d, (D-45)
E5 = R*—2d=2=2=E1 (D-46)
Subtracting both sides of Eq. (D-46) from those of Eq. (D-45), we obtain
2 _ 2
/ Ty — 13
= ) D-47
N (A
Because o' = U/, we have
a v
= p = = T (D-48)
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On the other hand, adding both sides of Eq. (D-45) to those of Eq. (D-46), we obtain

1, _ 22 + 32
R = 5(:3 +E5—4d) = 7i(5j)22' (D-49)

From Eq. (D48) and o' =V = ¢ = R3, + RorR3;, we obtain
RQ]Rg[ = (l/ — R%R

In addition, from the definition of R? we obtain R3; + R3; = R* — R?, — 2R3p. Thus,

we obtain
Ré] + (R%R + 2R§R - RQ)RSI + (a' - R%R)2 =0.

Since R%; and R2; satisfy the same equation, assuming R3; > R32,, we obtain

—(Rip + 2R3, — B?) + /(B + 2R3, — R?)? — 4(d' — R3,)°

2 _
R2I - 2 )
(D-50)
w (Rt 20— ) — /(R + 2R — R A — 1B,
3 .
2
(D51)

Thus, Rog = Rsgr, Ror, and Rs; are determined by Rjgr. Since this solution is a one-
parameter family, it is a continuous solution. See Appendix F for the range of Rig that
is derived from the condition that R3; is real. Furthermore, when the correlation a is
zero, we obtain u; = uy = ug = ugq and x; = x5 = x3 = 4. From Eq. (D-47), we obtain
a' =b = = 0. Thus, we obtain Rogp = R3g = 0 by Eq. (D-48). In this case, we obtain
Ror = 0 or R3; = 0 since ¢ = RyrR3; becomes zero. Therefore, the number of nonzero
variables among R, is only two.

II-A-2. cy3 # 0.

From Eq. (D-42), we obtain ¢ + ¢13 = 0. By Egs. (D-23) and (D-24), we obtain
Piu; = Pyus. From Egs. (D-22) and (D-25),

C11 = 4P1u1 -+ 2P2(u2 -+ U4), (D52)
Co3 — 4P1U1 -+ 2P2<-U2 — U4). (D53)
Since 8J(cq1 + ¢23) = 1, we obtain 8 Pyuy8J = 1. Thus, we have
1 1
= = , D-54
“1 86IP,  (1+3a)3] (D-54)
P 1

P2 (l—a)ﬁJ

50,62



J. Phys. Soc. Jpn.

From these equations, x; and x3 are uniquely determined. From Eq. (D-37), we have
(1= BJci)Ror = BJcos Ry
Since BJ(c11 + ¢o3) = 1, we obtain
Rsr = R3; # 0. (D-56)
From Eq. (D-37), we obtain ¢j5 + ¢33 = 0. Thus, from Eq. (D-33), we obtain
Rip = “2(Ryp — Rsp). (D-57)
Ca3
From Eq. (D-34), we have
(1= BJci)Rop = BJ(c12Rir + c23R3g).
By substituting Eq. (D-57) into Eq. (D-51), we obtain
(¢33 — c12)(Rar — Rar) = 0.

If we assume (¢33 — ¢25) # 0, we obtain Rop = Rag but Rig becomes zero from Eq.

(D-57). Thus, we have
Ch3 — iy = 0.

We study the two cases of A-2-1 cj5 = co3 and A-2-2 ¢15 = —co3 separately.
II-A-2-1. ¢ = c93. Asymmetric mixed solution: A;

From Eqs. (D-56) and (D-57), we obtain
RQ[ - R3[. (D58)
Rig = Rop— Rsgr. (D-59)

From Egs. (D-23) and (D-25), we obtain uy = us, xs = x3, and Zo = Z3. From Egs.
(D-27) and (D-28), ¢’ = ¢ follows and we obtain

RirRor = RapRsr + RarRsr. (D-60)
From Egs. (D-26)-(D-29),
= = R*+4d +2V, (D-61)
= = R*-2V, (D-62)
=2 = R*—dd +2V. (D-63)
By definition, we have
R* = Rip+ Ry + R3; + Ry + R3). (D-64)

51/62



J. Phys. Soc. Jpn.

As is shown below, from Eqgs. (78), (D-59), (D-60), (D-61), (D-62), and (D-63), the five
variables are determined. Thus, this is not the CA. Equation (D-64) is expressed as

R* = Rip+R3p+2R5, + (Ror — Rip)’
= 2R, + 2R3, + 2R3, —2d. (D-65)

From ¥’ = RigrRsr and Eq. (D-59), we obtain

R, = d-V.
Thus, we obtain @’ > b'. From R, = a' — b and @/, we obtain
R 9 d
2 R}, o=V’
By substituting Rsr into @’ = ¢/, we obtain
11/
s a'b
RQI —_— a — a/ — b/.

By substituting the above equations into Eq. (D-65), we obtain

R* = 2(2d -V). (D-66)
Then, from Eq. (D-61) we have
E] = R*+4d +2V =8d, (D-67)
ad = %Ef > 0. (D-68)
Similarly, from Egs. (D-62) and (D-63), we obtain
= o= RP-2V =4(d - V), (D-69)
=1 = R*—dd +2V =0. (D-70)

Thus, x4 = 0. From Egs. (D-67) and (D-69),
Vo= =(E}-253).
From Eq. (D-66),
R? = i(af + 222). (D-71)

Since we derived o' = ¢ and ', we obtain
1

R, = d-V= ZE%, (D-72)
2 a” Eil
RQR = a — b = 16537 <D73)
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Rz = (5)Rig= @(E% — 253)%, (D-74)
11/ =2
2 a'b 21 =2 =2
= R%I-
From ¢’ = RigRor and o' = ¢ = %E% > (0, we obtain Ryr > 0. From R3; > 0, we obtain

the following condition:

(222 4+ =21)(22, — 51) > 0,
= < 25
From the definition of ¢ and ¢ = £Z%, we obtain
1_
RorR3p = gZ% — R3;
=2
= — L (2 +V25,) (5 — V2E,).
16=5
From the condition =; < 2Z,, we obtain RopR3r < 0. Thus, R3g < 0. The critical
point is 78— % The values of u;, Rir, Rj;, and R are
1 1 1 0
Uu = 57 > u:uzi’ u:—7x‘:’
! (1+30)3J > 2 (a-aps’ * 277
1 =2 1
Rip = =E5, Rep=-=t, Rsp=——1|5; — 25}
1R 5=2 TR 1%, 3R 1=, 20
2 =7 2 2 2 1
RQI = @(4:2 — .:1) - Rg[, RQI = jo, R = 5 :% + 2:%
II-A-2-2. ¢j5 = —c93. Asymmetric mixed solution: A,
The asymmetric mixed solution As is obtained from the condition co3 = —cq9. This

solution is derived from solution A; by replacing p = 3 with 2, [ = 2 with 3, and [ =4
with 2.
I1-B. 6J(011 - 023) = 1.
By using 8J(c11 — co3) = 1, Eq. (D-41) becomes
023(012 — 013)2 = 0 (D76)
We study the two cases of B-1 ¢o3 = 0 and B-2 cy3 # 0 separately.
II-B-1. ¢53 = 0. Continuous attractor: CA
From the conditions, the solution is the CA.

II-B-2. Co3 7& 0.
From Eq. (D-76), we obtain ¢ — ¢;3 = 0. From Egs. (D-23) and (D-24), we obtain
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us = uy. By using SJ(c11 — ¢o3) = 1 and Egs. (D-22) and (D-25), we obtain
1 1

T8pIP, - (1-a)f)

From this, x5 = x4 is uniquely determined. From Eq. (D-37),

Uz

(1 — /BJ011>R2[ = /8J623R3[. (D?S)

Since 5J(c11 — ca3) = 1, we obtain Ry = —R3; # 0. From Eq. (D-33), we obtain

c
Rip = _E(RQR + Rsg). (D-79)

C23
From Eq. (D-34),
(1= BJei)Rop = BJ(craRir + cozR3r). (D-80)
By substituting Eq. (D-79) into Eq. (D-80), we obtain
(¢33 — ¢15)(Rop + Rsg) = 0.

If we assume (c33 — ¢35) # 0, we obtain Ryr = —Rsp but Rz becomes zero because of

Eq. (D-79). Thus, we have
Ch3 — iy = 0.
We study the two cases of B-2-1 ¢15 = c93 and B-2-2 ¢15 = —c93 separately.

II-B-2-1. ¢15 = —co3. Asymmetric mixed solution: Aj

Similarly to the case of II-A-2-1, we obtain

1 1 1 V22 1 222
vy =0, R= Y11=

U2 = Uy =

U = —— — Uq = —
(1 +3a)8) (1—a)pJ ° 2 2
1_ = 1,
Rigr = 2= Ror = Vil Rsp, RS, = E(‘lig —E1) = R3j, Ror = —Rar.
Thus, 2=9 > =4 should hold. The critical point is TC(AS): %
II-B-2-2. ¢35 = co3. Symmetric mixed solution: S3
Similarly to the case of II-A-2-1, we obtain the following:
Ror = R3p , Ror = —Ray.
The critical temperature is T8 = (172“)‘]. Since Rig > 0, Ryr becomes %EQ. Since
a' = RipRagr, we obtain @’ = b = ¢ < 0. Since Ryp = R3r < 0, we obtain Rop = —%.
Thus, we obtain
1 0 1
Uy = — T1 = Uo = Uy = Uy = —————————
1 27 1 ) 2 3 4 (1 — CL>/BJ’
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V3_ 1_ =, 3 _
R = 5 =2 Rip = 552 Rop = 5 = Rsgr, Ry = 1_653 = R}, Ror = —Ryr.

Ri = Ry = R3 holds. The critical point is T7.53) _(1*2@%7 _

ITI. (Ror, R3r) = (0,0) Symmetric mixed solution: S,

Firstly, we assume Rigp = Rogr = R3g > 0. Thus, R = Rig = Ry = Rj3 follows. From
Egs. (D-30)-(D-32), @’ =V = ¢ = R? follows. We assume R = Ryr = R3r. We obtain

R? = R} + R+ R = 3R} (D-81)

From Eq. (D-26), we obtain xz; = 35JR;. Thus, we have

= —xl = = .
R = 357 Ry = R, (D-82)
€
= . D-83
357 (D-83)

From Egs. (D-27)-(D-29), we obtain
To=x3 =24 = PBJR1 < x1=36JR;.
Adding both sides of the SPEs. (D-33)-(D-35) and using Eqgs. (D-22)-(D-25), we obtain
3 = BJA8Puy + 2Pyus + 2Pyus + 2Pyuy).

Because uy = ug = uy, we obtain

1
ﬁ_J = 6P1U1 —+ 2P2u2.
From the relaltions x1 = 3xg = 3x3 = 314, w; = u(xy), and R = \/?BJ’ the identity
R? = % 21221 Pux? becomes
1 3 1
57 = U+ 30ule)+ (- a)u(%). (D-84)

Therefore, z; is determined by Eq. (D-84). Let us derive the critical point of the sym-
metric mixed solution Sy from Eq. (D-84). The function u(z) decreases monotonically
as x increases and takes a maximum value of % at © = 0. Substituting u(0) = % into
Eq. (D-84), we obtain the critical point T8= % From the definition of ¢, Eq.
(55) is derived. Thus, Egs. (52)-(56) are derived.

Now, we show that the case that one or two of the R,z have the opposite sign does
not satisfy the SPEs. Let us consider the case that Rip = Rogp = —R3r > 0. In this case,
a=-V=—=R} Thus, 22 == =E2=R>—-2d =R} and 7y = 23 = 14 = SJ R,

follow. That is, u; = uz = u4 holds. From Egs. (D-33) and (D-34), we obtain

1 = BJ(CH + C1o0 — 013), (D-85)
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1 = 6J<012 +c11 — 023). (D86)

Thus, c12 = co3 follows. Substituting the definitions of ¢15 and ¢35 into this relation, we

obtain ug = u4. From Eq. (D-35), we obtain

1 = 6J<Cll - 2C13). (DS?)
Thus, c12 = —cq3 follows. From this, we obtain u; = %u;»,. Since u; = ug, this holds only

for a = 0. Finally, let us consider the case that Rirp = —Rog = —R3g > 0. Similarly,

we obtain ©; = us = uy and u; = %'UQ. Thus, this holds only for a = 0.

Appendix E: Stability Analysis of Irrelevant Solutions for p < 3
Now, we investigate the Hessian matrix at each unstable solution. Each component

of the Hessian matrix is given in Eqgs. (61)-(63).

E.1 Case of p=2
E.1.1 Symmetric mized solution Sy

For Sy, we have

1 1 T X

=—, =——— Rp=—==—Rog, Royy=0, R= .
41 5 Uz (l—a)ﬁJ 1R 23] 2R 21 \/§6J
Thus, the critical point is TC(SQ): % The values of ¢, and c,, are
1 1+a 1 1+a

Cuu:m—JJr 1 Cuu:—zﬁ—JJr 1 (n#v).

Now, we put ¥ = JN(3 — 23.J). Therefore, the Hessian matrix H is expressed as

1R 2R 1I 2I
IR{ A —A 0 0

2Rl A A 0 0
H =

7l o 0 5 -7

20\ 0 0 -5 7§

where A =4 — 2JN(B8.J)?X,R2,. Its determinant is
H—AE| = (24— X)(27 — \)(=))
The eigenvalues of this matrix are

A =0 (2-fold) , 24, 27.
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If 4 > 0, the solution is stable. The condition for this is T" > ta)] However, the con-

D)
dition for the existence of the solution S is T <7 = % Therefore, the symmetric

mixed solution Ss is unstable.

E.2 Case of p=3
E.2.1 Symmetric mized solution S3

For S3, we have

1 1
u =z, 1 =0, U2:U3:U4:ma

27
V3 1 = 3

R = 752, Rig = 552, Rop = —HZQ = Rsg, B3, = 1_653 = R3;, Ror = —Rsy.
Ry = Ry = R3 holds. The critical point is TC(SS): % The values of ¢, and ¢, are
3 1—a 1 1—a
CMM_M—J+ 8 9 CMV__M—J+ ] ) (M?él/)

We put ¥ = JN (i — 1g—“6J ). Therefore, the Hessian matrix # is expressed as

1R 2R 3R 11 21 31
IR[ 3A4—2% —24+43y —24+34 0 B ~-B
OR| —24+39 3A-25 A B 0 0
L _ 3R —2A+3% A 3A — 2% -B 0 0
17 0 B -B 34— 2% 0 0
21 B 0 0 0 3A—-29 —3A+44
3] -B 0 0 0 —3A+4% 3A-2%

where A =4 — LIN(8J)2X,Z% and B = —1JN(BJ)?¢rlor. Because of the rotational
symmetry, Ry; = 0 can be assumed. Then, we consider the 5 x 5 matrix without the 17

components. Its determinant is

3A—25 -\ —2A+3% 2B

H—AE| = —(2%—MN4A—-45—-2\)| —4A+65 4A—29— ) 0
B 0 —6A + 65+ X
Two of the six eigenvalues are 29 and 2(/1 — WA) In order that S; is stable, ¥ > 0 is
necessary. The condition for thisis 7" > % However, the condition for the existence
of the solution Ss is T <7, C(S?’): % Therefore, the symmetric mixed solution S3 is

unstable.
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E.2.2 Asymmetric mized solution A,

For A;, we have

Uy
Rir

2
RZI

[1]

We put +' = JN(% — 1%8“

1R
IR A

2R| A" =2+
Ao 3R B’
17 G’
21 G’
31 G’

where A' = v — LIN(B){X\Z} + Xah}, B' = 7 — LIN(BJ)*{Xi53 — X,

1 1 1
= Ty, U= Uz = o, Uy = 5, 24 =0,
(1+3a)3J 2T T 1= a)BJ 4= 5,1

1 1=2 1
= -5, Rop=-=t, Ryp=——|5] — 255
2 29 2R 4527 3R 452 1 21
=i 2 2 2 1
- =7 (425 — ZY) = Ry, Ror = Rar, R = 54/ 5] + 255
16=5 9

=157 T 8

3

A/

B/

l1—a 1 1—a
C12 = 45—J T TR = C23 = —(C13.
BJ) and then the Hessian matrix H is expressed as
2R 3R 17 21 31
— 29 B’ G’ G’ G’
A B — 2+ G’ G’ G’
— 2 A G’ G’ G’
G’ G’ c’ D’ D'+ 2+
G’ G’ D’ c’ C'—29
G’ G’ D' +2y C' -2 c’

482

1 < 225 should hold. The critical point is TC(Al): % The values of ¢,, and c,, are

=1

=2 J
4“2

C' = 5 = IN(BI?RY(X: + Xa), D' = —y — IN(BJ)?RE,(X; — Xu), and @' =
—iJN(BJ)ZchlRCH. Because of the rotational symmetry, Ry; = 0 can be assumed.

Then, we consider the 5 x 5 matrix without the 17 components. Its determinant is

H—AE| =

(27" = A)

279" — A
24" — 2+ — X\
—2A"4+2B" + 2+ + A
2G’

—4~" +2X

0

— 4y
0

/

A
—2A"+ 2B+ A
4A" —4B" — A\
0

0
2G"
0
20" =29/ = A

Thus, 27 is one of the eigenvalues. In order that the solution is stable, 4" > 0 should

hold. That is, T" >

2

(1—a)J

is necessary. However, the condition for the existence of

(1-a)J

the solution A; is T’ <7 = Gz Therefore, the asymmetric mixed solution A; is

unstable.

2
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E.2.3 Asymmetric mized solution As

For Aj, we have

1 1 1 VE 4253

Uy <1+3CL)/8J’ U2 Uyg (1—CL)/BJ’ us 27 xs3 ) 2 )
1 = 1,
Rig = 2= Rop = Zl = R, R3; = E(‘lig —Z1) = R}, Ror = —Rsy.

2Z9 > =1 should hold. The critical point is TC(AS): %

The values of ¢, and c,, are
3 l1—a 1 1—a

Cuu:w—J"‘Ta 012:45—J g (3=l
Defining v* = JN (3 — 1;8“ BJ), the Hessian matrix H is expressed as

1R 2R 3R 17 2r 31
1R A AF — 9y Iy ok ok —C
oR| A — 2y A A —wr 2y O ok —C
A BR| AW A w2y A —C* —C ok
17 ok o - B B* — 2y B
21 ok c —C B* — 29" B* —B* + 27"
31\ —C* —C ok —B*  —DB*+27* B

where A* = ~* — iJN(BJ)ZE%(Xl + %Xg), B* = ~* — JN(BJ)*X,R%,, C* =
—1JIN(BJ)?X2(orCor, and w* = LJN(8J)?X 21, Because of the rotational symme-
try, Ry = 0 can be assumed. Then, we consider the 5 x 5 matrix without the 17

components. Its determinant is

1 2A* — 29* — A —wt— A 20
—2 0 A 0
H—AE| = —(2v"—))
1 —4A* — 2w+ 29" + A 0 —4C*
0 20 0 2B* — 29* — \

Thus, 2v* is one of the eigenvalues. In order that the solution is stable, v+ > 0 should

hold. That is, T" > (=a)d g necessary. However, the condition for the existence of

2
the solution Az is T <TC(A3): % Therefore, the asymmetric mixed solution Aj is

unstable.
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Appendix F: Range of R,r and Relations R,r, Ror, and R3zgr for the CA
when p = 3
In the CA studied in Appendix D, there are the following relations with Riz > 0:

!/

Ry = 0, Rop= R3r = >0,
Rip
P B e
8(8J)*° 4(BJ)? "
a’ = b, = C/ = R%R + RQ[Rg].

From these, we obtain (RerR3r)* = (Rop — ')? and R3; + R3; = R* — R?, — 2R3p.
Thus, t = Ror or R3p satisfies

t* + (Rig + 2R3 — R*)t + (o' — R35)* = 0. (F-1)
We put b = R%, + 2R%, — R? and ¢ = (a/ — R2,)?. Then, the solutions of Eq. (F-1) are

bV —4e
- 5 ,

t

Since both R3; and R3; satisfy Eq. (F-1), we assume R3; > R3; and we have

) —b+ Vb2 —4¢
R2I = 2 Y
R SN/ ay:
R3I - .

2
We find that & = (¢/—R32z)? > 0. Since R%, and R2, are real and non-negative, b>—4¢ > 0
and b < 0 should be satisfied. Firstly, we study the range of Ry in which the following

relation holds:
b —4¢ = R+ R'4+4R’,R%, — 4R R* — 2R?,R* — 40 + 8d'R%, > 0.(F-2)
Now, we put y = Ri,. From the relation Rop = Ra—llR, Eq. (F-2) reduces to
fy) =y* — 2R%*? + R'y + 8d”® — 4a”R* > 0. (F-3)
B bstituti R2_5§+3E§ d ;) E2-E2 . E F.3 btai
y substituting R* = === and o’ = =52 into Eq. (F-3), we obtain

F) = (- B)y— 1@+ )My~ (& -2 20 (F-4)

Therefore, the three solutions of f(y) =0 are

1 1
- =2 (= =3V (=, —=.)2
y = Zo 4(~1+~2) ) 4<~1 Za)”
Next, we investigate the extreme values of this expression. The derivative of f(y) is
1 1 1
! 2 2
= — Ay 4+ —A* = —-A)(y— —A F-
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where A = =% + 323. Thus, the extreme values are attained at y = 14 and £ A. Note

that R? = 1A. At y = 4, f takes the following value:

Lo o e
fro= 1G5
and at y = 12, it takes the value
1 _ 1, o
f = —=(B1+35,) - = (B, — 5y)%=2.

432 16

We investigate the magnitude relation of the three solutions. From =; > =, > 0, we
obtain % > =y and % > % > (. Therefore, the shape of the graph of f is as

shown in Fig. F-1. Thus, the range of Rz where f > 0 is satisfied is the following.

f A

f=0

A= R > R

H= ] =

Fig. F-1. Function f.

(i) When 21 > 35,, S < Rip < i(E1—5,).
(11) When El < 3527 %(El — Eg) < RIR < EQ .
Now, let us study the region in which b < 0 holds. We define the function g(y) as

9ly) = Rigb=y*— R% + 2"
1 _ 1 _ _
= v —Z(~1+3 2)y+§(:f—:§)2
We estimate g(y) at y = Z3 and 1(Z; — Z)2.
- Lo ovim2 o=
o) = (E - TE -9
1, 1 e
9(;E1-%2)) = 55(:1—':2)(:1—'3:ﬂ(:14*:2)

Thus, the necessary and sufficient condition for b < 0is Z; < 3Z,. Therefore, case (ii)

should hold. Next, let us study the magnitude relation of Rr, Rogr, and R3gr. The range
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of R1r where the CA appears is

R~ < Rip < R*, (F-6)
where R~ = % and RT = Z,. We compare the magnitude relation between R;r and
R2R7

Rip — Rop = L(RQ _ @)
Rip g 7
Since =; < 3=, R;p takes the minimum value %(El — Z5). Thus, we obtain
, S2_E2 1
Therefore, we obtain Rigp < Ror. On the other hand, when R;p takes the maximum
value =,
9 =2 =2 1
(RlR o 8 )max - §<3‘:2 + ‘:1)<3‘:2 - *:1) > 0.

Thus, we obtain Rz > Ror. When =, = 35,, then Rig = Rop = Rap = =0, b=¢=0,
and Ry; = Ror = R3; = 0 follow. That is, the CA degenerates into the symmetric mixed
solution Sy.

From the above results, it is proved that there is a situation with Riz = Ror = R3gr
as long as the CA exists, since the magnitude relation between Rir and Ryr changes

in the range of Rig.
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