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We analyze the structure of attractors in the classical XY model with an associative-

memory-type interaction by the statistical mechanical method. Previously, it was found

that when patterns are uncorrelated, points on a path connecting two memory patterns

in the space of the order parameters are solutions of the saddle point equations (SPEs)

in the case that p is O(1) irrespective of N and N ≫ 1, where p and N are the numbers

of patterns and spins, respectively. This state is called the continuous attractor (CA). In

this paper, we clarify the conditions for the existence and stability of the CA with and

without the correlation a (0 ≤ a < 1) between any two patterns in the case that N ≫ 1

and the self-averaging property holds. We find that the CA exists for any p ≥ 2 when

a = 0, but it exists only for p = 2 when 0 < a < 1 and for p = 3 when a < 1/3. For

p = 2 and 3, and for a < 1, we analyze the SPEs and find all solutions and study their

stabilities. We perform Markov chain Monte Carlo simulations and compare numerical

and theoretical results. We find that for a finite system of size N and for a = 0, owing

to the breakdown of the self-averaging property, the CA ceases to exist at a finite value

of p. We define the critical value of pc until which the CA exists and numerically study

the system size N dependence of pc. We find that the numerical results are consistent

with the theoretical results obtained by taking into account the breakdown of the self-

averaging property. Furthermore, for a > 0, we numerically study the case that patterns

are subject to external noise and find that pc increases as the noise amplitude increases.
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1. Introduction

Since Hopfield proposed a model of the associative memory of a neural network,1)

many studies on the subject have been carried out from the viewpoint of statistical

mechanics2)−.7) In many studies, states of neurons are represented by Ising spins as in

the Hopfield model. In our previous study,8) however, we adopted the classical XY spins

as states of neurons. The main motivation for this is that we wanted to construct an

associative memory model with the following properties that real brains have. In real

brains, different memories spontaneously appear one after another, and by an external

stimulus, a memory related to the stimulus is retrieved. That is, it seems that many

memories in a real brain are “connected” in a sense. We expected that associative mem-

ory models composed of the XY spins would have such connected memories because

they have a continuous degree of freedom, contrary to models composed of the Ising

spins, which have only isolated memories, i.e., point attractors.

We analyzed the XY spin system with the associative memory interaction by the sta-

tistical mechanical method in the case that p is O(1) irrespective of N and N ≫ 1,

where p and N are the numbers of patterns and spins, respectively, when patterns are

uncorrelated. We derived the saddle point equations (SPEs) for the order parameters,

and by numerically solving the SPEs we found a new type of attractor, the so-called

continuous attractor (CA). The CA is a one-parameter family of solutions of the SPEs,

and the points on a path connecting any two memory patterns in the space of order

parameters become solutions, which we expected to exist in the XY spin system. See

Fig. 1. We performed Markov chain Monte Carlo simulations (MCMCs) and confirmed

the theoretical results numerically.

In this paper, we study the two cases that patterns are uncorrelated and correlated,

in the case that N ≫ 1 and the self-averaging property holds. Let a be the correlation

between any two patterns, 0 ≤ a < 1. By introducing sublattices, we rewrite the SPEs

in a compact form, which allows us to characterize the CA and enables us to study

solutions of the SPEs and their stabilities analytically. Then, we find the conditions

for the existence with and without the correlation a. The CA exists for any p when

a = 0, whereas it exists only for p = 2 when 0 ≤ a < 1 and for p = 3 when a < 1
3
.

We perform MCMCs and compare numerical and theoretical results. When a = 0,

contrary to the theoretical result, numerical results show that the CA ceases to exist

at a finite value of p. We define the critical value of pc until which the CA exists
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Fig. 1. Schematic figures of point attractors and continuous attractors. ξ denotes a pattern. Left:

dips represent point attractors. The dip in the middle is a mixed state composed of three patterns.

Right: valleys represent continuous attractors.

and numerically study the N dependence of pc. We find that the numerical results are

consistent with the theoretical results obtained by taking into account the breakdown of

the self-averaging property. For a > 0, we confirm the theoretical results by numerical

simulations. Furthermore, for a > 0, we numerically study the case that patterns are

subject to external noise and find that pc increases as the noise amplitude increases.

The structure of this paper is as follows. In sect. 2, we analyze the SPEs, rewrite

them by introducing sublattices, and show the list of stable solutions for p ≤ 3. In

sect. 3, we characterize the CA and derive the conditions for its existence. In sect. 4,

we study the stabilities of the relevant solutions, mainly for p ≤ 3, by calculating the

Hessian matrix. In sect. 5, we show numerical results for the phase diagram in the (a, T )

plane, the temperature dependences of order parameters, the N dependence of pc, and

the effects of noise input to patterns. Section 6 contains a summary and discussion

of the results. In Appendix A, we derive the expressions for the free energy and the

SPEs, and we describe the properties of the function u(x) that appears in the SPEs

in Appendix B. In Appendix C, we give proofs of relations among variables related to

sublattices. We derive all solutions of the SPEs for p ≤ 3 in Appendix D. The stabilities

of irrelevant solutions of the SPEs for p ≤ 3 are analyzed in Appendix E. In Appendix

F, for p = 3, we derive the range of an order parameter that characterizes the CA, and

relations between order parameters for the CA.
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2. Analysis of the Saddle Point Equations

We study the XY model, which consists of N XY spins X i = (cosφi, sinφi), 1 ≤
i ≤ N , where φi is the phase of the ith XY spin. The Hamiltonian H for the XY model

is given by

H = −
∑

i<j

Jij cos(φi − φj). (1)

The associative memory interaction is expressed as

Jij =
J

N

p
∑

µ=1

ξµi ξ
µ
j . (2)

We assume that the µth memory pattern ξµi takes values of ±1 and that a correlation

exists between the memory patterns, which is represented by 〈ξµi ξνj 〉 = aδij for µ 6= ν

and 〈ξµi ξµj 〉 = δij , where 〈· · · 〉 denotes the average over {ξµi }. We assume 0 ≤ a < 1.

The order parameter is defined by

RµR =
1

N

N
∑

i=1

ξµi cosφi, (3)

RµI =
1

N

N
∑

i=1

ξµi sinφi. (4)

The Hamiltonian is rewritten as follows:

H = −JN

2

p
∑

µ=1

R2
µ +

Jp

2
, (5)

Rµ =
√

R2
µR +R2

µI . (6)

2.1 Free energy and saddle point equations

As is derived in Appendix A for N ≫ 1, the free energy F = − 1
β
lnZ is expressed

as Eq. (7), where β = 1
T
and the Boltzmann constant is set to 1, kB = 1,

F =
JN

2
R2 − 1

β

N
∑

j=1

ln(2πI0(βJΞj)), (7)

where

R =

√

√

√

√

p
∑

µ=1

R2
µ, (8)

Ξj =

√

√

√

√(

p
∑

µ=1

ξµj RµR)2 + (

p
∑

µ=1

ξµj RµI)2, (9)
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In(x) =
1

2π

∫ 2π

0

ex cosφ cos(nφ)dφ. (10)

In(x) is the modified Bessel function of the first kind. The SPEs are obtained as

RµR = βJ
1

N

N
∑

j=1

p
∑

ν=1

u(xj)ξ
µ
j ξ

ν
jRνR, (11)

RµI = βJ
1

N

N
∑

j=1

p
∑

ν=1

u(xj)ξ
µ
j ξ

ν
jRνI , (12)

xj = βJΞj , u(x) =
I1(x)

xI0(x)
. (13)

The function u(x) has the following properties:

u(0) =
1

2
, lim

x→∞
u(x) = 0,

u(x) > 0, for x ≥ 0, u′(x) < 0, for x > 0.

See Appendix B for details. Figure 2 shows the graph of u(x).
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Fig. 2. Function u(x).

We consider the case that the self-averaging property holds. That is,

1

N

N
∑

j=1

g(ξµj ) = [g(ξµ)], (14)

where [·] means the average over {ξµi }. Thus, we obtain

RµR = βJ

p
∑

ν=1

cµνRνR, (15)

RµI = βJ

p
∑

ν=1

cµνRνRI . (16)

Here, we define

cµν =
[

u(xj)ξ
µ
j ξ

ν
j

]

= cνµ. (17)
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Now, let us study whether or not reflection symmetry exists in the solutions of the SPEs.

(11) and (12). Suppose that the order parameters ({RνR}, {RνI}) are the solutions of

the SPEs. Let us consider the order parameters in which the signs of Rµ0R and Rµ0I

are reversed, that is, we consider (R1R, · · · ,−Rµ0R, · · · , RpR, R1I , · · · ,−Rµ0I , · · · , RpI).

We define R′
µ0R

= −Rµ0R, ξ
′µ0

j = −ξµ0

j , and for µ 6= µ0, R
′
µR = RµR and ξ′µj = ξµj . xj is

expressed as

xj = βJ

√

√

√

√(

p
∑

µ=1

ξ′µjR
′
µR)

2 + (

p
∑

µ=1

ξ′µjR
′
µI)

2. (18)

Then, we find that ({R′
µR}, {R′

µI}) satisfy the SPEs. (11) and (12) with ξ replaced by

ξ′. Let ξ0j be the “mother” pattern, which takes values of ±1 with probability 1
2
and

produces ξ1j , · · · , ξpj . The conditional probability P (ξµj |ξ0j ) of ξµj given ξ0j is

P (ξµj |ξ0j ) =
1 +

√
a

2
δξµj ,ξ0j +

1−√
a

2
δξµj ,−ξ0j

. (19)

Then, we obtain for µ 6= ν

P (ξµj , ξ
ν
j ) =

∑

ξ0j

P (ξµj |ξ0j )P (ξνj |ξ0j )P (ξ0j )

=
1 + a

4
(δξµj +ξνj ,2

+ δξµj +ξνj ,−2) +
1− a

4
δξµj +ξνj ,0

. (20)

On the other hand, we obtain for µ0 and ν 6= µ0

P (ξ′µ
0

j , ξ′νj ) =
1 + a

4
(δ−ξ′

µ0

j +ξ′νj ,2
+ δ−ξ′

µ
j +ξ′νj ,−2) +

1− a

4
δ−ξ′

µ0

j +ξ′νj ,0
. (21)

Therefore, we obtain 〈ξ′µ0

j ξ′νj 〉 = −〈ξµ0

j ξνj 〉 = −a for µ0 6= ν. Thus, the average over {ξ′}
is different from that over {ξ} when a 6= 0. Thus, we conclude that

(R1R, · · · ,−Rµ0R, · · · , RpR, R1I , · · · ,−Rµ0I , · · · , RpI) do not satisfy the SPEs for a 6= 0.

However, if all of the signs of {RµR} and {RνI} are reversed, these are also the solutions

of the SPEs.

Now, we introduce the sublattice Λl (l = 1, · · · , 2p), which is a set of i. In Λl, ξ
µ
i

takes the value ηµl ,

(ξ1i , ξ
2
i , · · · , ξpi ) = (η1l , η

2
l , · · · , ηpl ), i ∈ Λl.

{ηµl } are determined consecutively for p ≥ 2 as follows. When p = 2, we define η11 =

1, η21 = 1, η12 = 1, η22 = −1. Starting from this, other ηµl are determined. We set η1l = 1

for l = 1, · · · , 2p−1. We define Λl+2p−1 in which the following relations hold:

ηµ
l+2p−1 = −ηµl , (l = 1, · · · , 2p−1 , µ = 1, · · · , p). (22)
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In addition, when the number of patterns is p + 1, the values {ηµ,(p+1)
l } for p + 1 are

determined so that η
2,(p+1)
l , · · · , ηp+1,(p+1)

l have the following relationship with the values

{ηµ,(p)l } for p:

η
µ,(p+1)
l = η

µ−1,(p)
l , (l = 1, · · · , 2p , µ = 2, · · · , p+ 1). (23)

See Appendix C for details. For j ∈ Λl, Ξj takes the same value, which we denote by

Ξl. Ξl is expressed as

Ξl =

√

√

√

√(

p
∑

µ=1

RµRη
µ
l )

2 + (

p
∑

µ=1

RµIη
µ
l )

2, (24)

Ξl+2p−1 = Ξl , (l = 1, 2, · · · , 2p−1). (25)

Let Pl be the probability that ξµi is equal to ηµl for i = 1, 2, · · · , N . By the self-averaging

property, the average over N neurons is expressed as

1

N

N
∑

j=1

g(ξµj ) =
2p
∑

l=1

Plg(η
µ
l ). (26)

The SPEs. (15) and (16) and Eq. (24) are rewritten as

RµR = βJ

p
∑

ν=1

cµνRνR, (27)

RµI = βJ

p
∑

ν=1

cµνRνI , (28)

cµν ≡
2p
∑

l=1

Plulη
µ
l η

ν
l = cνµ, (29)

ul ≡ u(xl) , xl ≡ βJΞl, (30)

Ξl =

√

R2 + 2
∑

µ<ν

ηµl η
ν
l (RµRRνR +RµIRνI). (31)

From Eq. (31), we obtain

2p−1
∑

l=1

Ξ2
l =

2p−1
∑

l=1

(

R2 + 2
∑

µ<ν

ηµl η
ν
l (RµRRνR +RµIRνI)

)

. (32)

The following relation holds:

2p−1
∑

l=1

ηµl η
ν
l = 2p−1δµν . (33)
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See Appendix B for its proof. Therefore, Eq. (32) is rewritten as follows:

2p−1
∑

l=1

Ξ2
l = 2p−1R2,

R2 =
1

2p−1

2p−1
∑

l=1

(
xl

βJ
)2. (34)

From Eqs. (27) and (28), we obtain

R2
µ = βJ

p
∑

ν=1

cµν(RµRRνR +RµIRνI). (35)

Thus, by using Eq. (29), R2 is expressed as

R2 =

p
∑

µ=1

βJ

p
∑

ν=1

cµν(RµRRνR +RµIRνI)

=
2

βJ

2p−1
∑

l=1

Plulx
2
l . (36)

2.2 Stable solutions of the SPEs and their stabilities

In this section, we list the stable solutions of the SPEs for p ≤ 3. Detailed descrip-

tions including unstable solutions are given in Appendix D. The stabilities of the stable

solutions are analyzed in sect. 4 and those of the unstable solutions are analyzed in

Appendix E.

2.2.1 Case of p = 2

η1l η2l

l = 1 1 1

l = 2 1 -1

l = 3 -1 -1

l = 4 -1 1

Table I: Values of {ηµl } in each sublattice for p = 2.

In Table I, we show the values of {ηµl } in each sublattice.

Memory pattern: M

R1 > 0 and R2 = 0. This solution exists only when there is no correlation between

patterns. The solution is characterized as

u1 = u2 =
1

βJ
, x1 = x2, (37)
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cµν =
1

βJ
δµν , (38)

R = R1 =
x1

βJ
. (39)

The critical temperature is T
(M)
c = J

2
. The solution exists for T < T

(M)
c and is stable.

Continuous attractor: CA

This solution exists for a < 1 and is characterized as

u1 =
1

(1 + a)βJ
, u2 =

1

(1− a)βJ
, (40)

cµν =
1

βJ
δµν , R2 =

x2
1 + x2

2

2(βJ)2
. (41)

The critical temperature is T
(CA)
c = (1−a)J

2
. The CA is stable for T <T

(CA)
c .

Symmetric mixed solution: S1 (R1R = R2R, R1I = R2I = 0)

This solution is characterized as

u1 =
1

(1 + a)βJ
, u2 =

1

2
, x2 = 0, (42)

cµµ =
1

2βJ
+

1− a

4
, cµν =

1

2βJ
− 1− a

4
(µ 6= ν), (43)

R1 =
x1

2βJ
= R2 , R =

x1√
2βJ

. (44)

The solution exists for T <T
(S1)
c = (1+a)J

2
. The stability condition is

(1− a)J

2
< T < T

(S1)
c . (45)

Thus, this solution is unstable for a = 0.

2.2.2 Case of p = 3

η1l η2l η3l

l = 1 1 1 1

l = 2 1 1 -1

l = 3 1 -1 -1

l = 4 1 -1 1

l = 5 -1 -1 -1

l = 6 -1 -1 1

l = 7 -1 1 1

l = 8 -1 1 -1

Table II: Values of {ηµl } in each sublattice for p = 3.

In Table II, we show the values of {ηµl } in each sublattice for p = 3.
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Memory pattern: M

This solution exists only when there is no correlation between patterns. It is character-

ized as

u1 = u2 = u3 = u4 =
1

βJ
, x1 = x2 = x3 = x4, (46)

c11 =
1

βJ
, c12 = c13 = c23 = 0, R = R1 =

x1

βJ
. (47)

This solution exists and is stable for T <T
(M)
c , where T

(M)
c = J

2
.

Continuous attractor: CA

This solution exists for a < 1
3
and is characterized as

u1 =
1

(1 + 3a)βJ
, (48)

u2 = u3 = u4 =
1

(1− a)βJ
, (49)

x2 = x3 = x4, (50)

cµν =
1

βJ
δµν , R2R = R3R, R2 =

x2
1 + 3x2

2

4(βJ)2
. (51)

We denote the critical point as T
(CA)
c , which is determined by the condition x1 = 3x2.

For example, in the case of a = 0.1, T
(CA)
c =0.42. It is stable for T < T

(CA)
c .

Symmetric mixed solution: S4 (R1 = R2 = R3)

R1R = R2R = R3R holds, and this solution is characterized as

x2 = x3 = x4 =
x1

3
, (52)

u2 = u3 = u4, (53)

1

βJ
=

3

4
(1 + 3a)u(x1) +

1

4
(1− a)u(

x1

3
), (54)

cµµ =
3

βJ
− 2(1 + 3a)u1 , cµν = − 1

βJ
+ (1 + 3a)u1 (µ 6= ν), (55)

R1 =
x1

3βJ
= R2 = R3 , R =

x1√
3βJ

. (56)

The critical point is T
(S4)
c = (1+2a)J

2
. When a < 1

3
, this solution is stable for T

(CA)
c <

T <T
(S4)
c . When a > 1

3
, it is stable for T < T

(S4)
c .

In Appendix D, we prove that for a 6= 0, when one or two of R1R, R2R, and R3R have

different signs, they do not satisfy the SPEs.
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3. Characteristics and Conditions for the Existence of a Continuous Attrac-

tor

The CA is defined as a one-parameter family of solutions. The existence of the CA

depends on p, J, β, and a.

3.1 Characteristics of the CA

The CA is characterized by Plul = constant for all l and cµν = 1
βJ
δµν . Let us prove

these statements.

(1) Plul = constant.

From Eqs. (34) and (36), we obtain

2p−1
∑

l=1

x2
l = 2pβJ

2p−1
∑

l=1

Plulx
2
l . (57)

The sufficient condition for Eq. (57) is

xl(1− 2pβJPlul) = 0.

The condition satisfying this equation is either of the following two equations:

xl = 0, (58)

Plul =
1

2pβJ
. (59)

If Eq. (59) holds for all l, Plul is determined only by β, J , and p. Therefore, x1, · · · , x2p−1

is determined only by β, J, p, and a. In this case, if there is one variable that can change

freely, it is the CA.

(2) cµν = 1
βJ
δµν

Now, let us assume that Plul = constant for all l. Then, by using
∑2p−1

l=1 ηµl η
ν
l = 2p−1δµν ,

we obtain

cµν = Plul

2p
∑

l=1

ηµl η
ν
l = Plul2

pδµν .

Therefore, because Plul =
1

2pβJ
, we derive

cµν =
1

βJ
δµν . (60)

Conversely, if Eq. (60) holds, the SPEs. (27) and (28) are satisfied and x1, · · · , xp are

determined by Eq. (59).
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3.2 Conditions for the existence of the CA for a = 0

The CA exists for arbitrary p (≥ 2). Let us prove this. Let us assume that only two

Rµ are not zero. For example, we assume R1R 6= 0 , R1I = 0 , R2 6= 0 , R3 = · · · = Rp =

0. This is possible since there is no correlation between patterns. From Eq. (59), since

Pl = 1/2p, u1 = u(x1) =
1
βJ
. Thus, the solution exists for u(0) ≥ 1

βJ
. This implies that

T
(CA)
c = Ju(0) = J

2
.

3.3 Conditions for the existence of the CA for a > 0

The condition on p for the existence of the CA is obtained by comparing the number

of conditions for the CA and the number of variables RµR and RµI . The number of

conditions is the number of equations on Ξl, and is 2p−1 since Ξl+2p−1 = Ξl holds.

Because of the rotational symmetry, R1I = 0 can be assumed. The CA is assumed to

be a one-parameter family. Therefore, the number of dependent variables that should

be decided is 2(p− 1). Thus, 2p−1 = 2(p− 1) is the condition on p for the existence of

the CA. Only p = 2 and 3 satisfy this condition. Thus, the CA does not exist for p > 3.

The critical point T
(CA)
c of the solution for p = 2 is obtained from Eq. (40) for u(x2),

1

(1− a)βJ
≤ 1

2
.

Therefore, the critical point is T
(CA)
c = (1−a)J

2
. In the case of p = 3, x1 < 3x2 is necessary.

When x1 = 3x2, the CA coincides with the symmetric mixed solution S4. See Appendices

D and E for details. When the CA disappears, the symmetric mixed solution S4 becomes

stable.

Now, for p = 3, we derive the condition on the correlation a for the existence of the

CA. When T ∼ 0, the function ul becomes very small from Eqs. (48) and (49), and xl

becomes very large. The function u(x) can be approximated for x ≫ 1 as follows:

u(x) ≃ 1

x
.

See Appendix B. Since u1 =
1

(1+3a)βJ
and u2 =

1
(1−a)βJ

, we obtain

x1 ≃ (1 + 3a)J

T
,

x2 ≃ (1− a)J

T
.

Substituting them into the condition for the existence of the CA, i.e., x1 < 3x2, we
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obtain

a <
1

3
.

In Fig. 3, we show the phase diagram in the (a, T ) plane for p = 2 and 3. The theoretical

results agree with the numerical results obtained by MCMCs reasonably well.
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Fig. 3. Phase diagram of the CA and the symmetric mixed solutions S1 for p = 2 and S4 for p = 3 in

the (a, T ) plane. Curves: theoretical results. Solid curve: T
(CA)
c , dotted curves: T

(S1)
c and T

(S4)
c . Symbols:

results from MCMCs with N = 20000. Circles: CA, squares: S1, S4, stars: Para. Left: p = 2, right:

p = 3.

4. Stabilities of Relevant Solutions for p ≤ 3

In this section, we study the stabilities of relevant solutions of the SPEs. Those for

unstable solutions are given in Appendix E. We calculate the Hessian of the free energy

F . The components of the Hessian matrix H are written as follows:

H(µR,νR) ≡ ∂2F

∂RµR∂RνR

= JN
(

δµν − βJcµν − (βJ)3
2p
∑

l=1

PlulXlη
µ
l η

ν
l (ζlR)

2
)

, (61)

H(µI,νI) ≡ ∂2F

∂RµI∂RνI

= JN
(

δµν − βJcµν − (βJ)3
2p
∑

l=1

PlulXlη
µ
l η

ν
l (ζlI)

2
)

, (62)

H(µR,νI) ≡ ∂2F

∂RµR∂RνI

= JN
(

−(βJ)3
2p
∑

l=1

PlulXlη
µ
l η

ν
l ζlRζlI

)

, (63)

where

ζlR ≡
p

∑

ω=1

RωRη
ω
l , ζlI ≡

p
∑

ω=1

RωIη
ω
l ,
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xl = βJΞl = βJ
√

(ζlR)2 + (ζlI)2, Xl ≡
u′(xl)

xlu(xl)
.

These are general expressions for the Hessian matrix.

4.1 Case of p = 2

Memory pattern

The memory pattern exists only when a = 0. Since R1I = 0, we obtain

R2R = R2I = 0.

The values of xl, ul, and R for the memory pattern are

x1 = x2, u1 = u2 =
1

βJ
, R =

x1

βJ
.

The solution exists for u1 ≤ 1
2
. Thus, the critical point is T

(M)
c = J

2
. The values of ζlR,

ζlI , cµµ, cµν , and Plul are given as

ζ1R = ζ2R = R1R, ζ1I = ζ2I = 0,

cµµ =
1

βJ
, cµν = 0 (µ 6= ν), Plul =

1

2pβJ
.

Therefore, the components of the Hessian matrix H are

H1R1R = −1

2
JN(βJ)2(ζ1R)

2(X1 +X2)

= −JN(βJ)2(ζ1R)
2X1 = H2R2R ≡ A,

HµRνR = 0, (µ 6= ν), HµRνI = HµIνI = 0 (µ, ν = 1, 2).

We define the arrangement of the matrix elements as 1R, 2R, 1I, and 2I.

H =















1R 2R 1I 2I

1R A 0 0 0

2R 0 A 0 0

1I 0 0 0 0

2I 0 0 0 0















.

The four eigenvalues of this matrix are

λ = 0 (2-fold), A (2-fold).

A is expressed as

A = −JN(βJ)2(ζ1R)
2X1.

Since J > 0, N > 0 and Xl < 0, this is positive. Thus, the Hessian matrix H at the

memory pattern has zero (2-fold) and positive (2-fold) eigenvalues. Thus, it is stable.
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The continuous attractor

By using the relations Plul =
1

2pβJ
and cµν = 1

βJ
δµν for the CA, the components of the

Hessian matrix are given by

∂2F

∂RµR∂RνR

= −JN(βJ)2
1

2p−1

2p−1
∑

l=1

Xlη
µ
l η

ν
l (ζlR)

2, (64)

∂2F

∂RµI∂RνI

= −JN(βJ)2
1

2p−1

2p−1
∑

l=1

Xlη
µ
l η

ν
l (ζlI)

2, (65)

∂2F

∂RµR∂RνI

= −JN(βJ)2
1

2p−1

2p−1
∑

l=1

Xlη
µ
l η

ν
l ζlRζlI . (66)

Case of a = 0

We investigate the stability of the CA for a = 0. For l = 1, · · · , p, we have the following
relations:

Plul =
1

2pβJ
, ul =

1

βJ
> 0, xl = constant > 0, Xl =

u′(xl)

xlu(xl)
< 0.

None of the quantities depend on l. We define Λ as Λ = − 1
JN(βJ)2

H. Therefore, we

obtain

ΛµRνR ≡ − 1

JN(βJ)2
∂2F

∂RµR∂RνR

=
1

2p−1
X

2p−1
∑

l=1

ηµl η
ν
l (ζlR)

2, (67)

ΛµRνI =
1

2p−1
X

2p−1
∑

l=1

ηµl η
ν
l ζlRζlI , (68)

ΛµIνI =
1

2p−1
X

2p−1
∑

l=1

ηµl η
ν
l (ζlI)

2, (69)

where X ≡ Xl. For p ≥ 2, we assume R1R 6= 0 , R1I = 0 , R2 6= 0 , R3 = · · · = Rp = 0

without loss of generality. As is shown in Appendix D, for a = 0 and p = 2, when we

assume R2I 6= 0, R2R = 0 follows. Then, we have

R1 = |R1R| , R2 = |R2I |,

ζlR =

p
∑

µ=1

RµRη
µ
l = R1Rη

1
l , ζlI =

p
∑

µ=1

RµIη
µ
l = R2Iη

2
l .

We substitute these into Eqs. (67)-(69). The following equation is verified:

2p−1
∑

l=1

ηµl η
ν
l η

1
l η

2
l =







2p−1 (µ, ν) = (1, 2) or (2, 1),

0 other cases.
(70)
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See Appendix B for the proof. First of all, we consider the case when (µ, ν) = (1, 2) or

(2, 1). Because
∑2p−1

l=1 (η1l η
2
l )

2 = 2p−1,

ΛµRνI =
1

2p−1
XR1RR2I

2p−1
∑

l=1

ηµl η
ν
l η

1
l η

2
l = XR1RR2I .

When (µ, ν) 6= (1, 2), (2, 1),

ΛµRνI =
1

2p−1
XR1RR2I

2p−1
∑

l=1

ηµl η
ν
l η

1
l η

2
l = 0.

Thus, each component of the matrix Λ is expressed as follows:

ΛµRνR =
1

2p−1
XR2

1

2p−1
∑

l=1

ηµl η
ν
l = XR2

1δµν ,

ΛµRνI =
1

2p−1
XR1RR2I

2p−1
∑

l=1

ηµl η
ν
l η

1
l η

2
l

=







XR1RR2I (µ, ν) = (1, 2) or (2, 1),

0 other cases,

ΛµIνI = XR2
2δµν .

The matrix Λ is

Λ =















1R 1I 2R 2I

1R Λ1R1R Λ1R1I Λ1R2R Λ1R2I

1I Λ1I1R Λ1I1I Λ1I2R Λ1I2I

2R Λ2R1R Λ2R1I Λ2R2R Λ2R2I

2I Λ2I1R Λ2I1I Λ2I2R Λ2I2I















= X















R2
1 0 0 R1RR2I

0 R2
2 R1RR2I 0

0 R1RR2I R2
1 0

R1RR2I 0 0 R2
2















.

We solve the eigenvalue problem of this matrix as

|Λ− λE| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

XR2
1 − λ 0 0 XR1RR2I

0 XR2
2 − λ XR1RR2I 0

0 XR1RR2I XR2
1 − λ 0

XR1RR2I 0 0 XR2
2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λ2(λ−XR2)2 = 0.

The eigenvalues are obtained as

λ1 = 0 (2-fold), λ2 = XR2 < 0 (2-fold).
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Thus, the eigenvalues of the Hessian matrix H are zero and −JN(βJ)2XR2 > 0.

Therefore, the CA is stable. The free energy of the CA has the shape of a valley, which

is composed of the route from a certain memory pattern to another memory pattern.

The eigenvalue with twofold degeneracy λ1 = 0 reflects the existence of the CA and the

rotational symmetry.

Case of a > 0

If there is a correlation between patterns, all overlaps Rµ have nonzero values. Therefore,

we assume R1R > 0, R1I = 0, and R2 6= 0 without loss of generality. Since R1I = 0, we

obtain

ζ1R = R1R +R2R, ζ2R = R1R − R2R,

ζ1I = R1I +R2I = R2I , ζ2I = R1I − R2I = −R2I .

The Hessian matrix H is obtained from Eqs. (64)-(66). Λ is defined as

Λ = − 2

JN(βJ)2
H.

We obtain

Λ1R1R = X1(ζ1R)
2 +X2(ζ2R)

2 = Λ2R2R ≡ A < 0,

Λ1R2R = X1(ζ1R)
2 −X2(ζ2R)

2 = Λ2R1R ≡ B,

Λ1I1I = X1(ζ1I)
2 +X2(ζ2I)

2 = Λ2I2I ≡ C < 0,

Λ1I2I = X1(ζ1I)
2 −X2(ζ2I)

2 = Λ2I1I ≡ D,

Λ1R1I = X1ζ1Rζ1I +X2ζ2Rζ2I = Λ2R2I ≡ G,

Λ1R2I = X1ζ1Rζ1I −X2ζ2Rζ2I = Λ2R1I ≡ K.

The matrix Λ is

Λ =















1R 1I 2R 2I

1R A G B K

1I G C K D

2R B K A G

2I K D G C















.
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From the rotational symmetry, we can omit the row and column that contain R1I . We

call this matrix Λ again and solve the eigenvalue problem of Λ,

|Λ− λE| =

∣

∣

∣

∣

∣

∣

∣

∣

A− λ B K

B A− λ G

K G C − λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

λ3 − (2A+ C)λ2 + (2AC + A2 − B2 −G2 −K2)λ

− (A2C + 2BGK − AK2 −B2C −A2G) = 0.

The constant term becomes 0 and thus there is an eigenvalue of 0. Thus, we obtain

λ2 − (2A+ C)λ+ 2AC + A2 − B2 −G2 −K2 = 0.

By defining g ≡ −(2A+C) and h ≡ 2AC+A2−B2−G2−K2, we obtain λ2+gλ+h = 0.

The solutions are

λ± =
1

2
(−g ±

√

g2 − 4h).

g2 and h are calculated as

g2 =
(

X1{2(ζ1R)2 + (ζ1I)
2}+X2{2(ζ2R)2 + (ζ2I)

2}
)2

,

h = 2X1X2

(

(ζ1R)
2(ζ2I)

2 + (ζ1I)
2(ζ2R)

2 + 2(ζ1R)
2(ζ2R)

2
)

.

Since A < 0 and C < 0, g > 0 follows. In addition, since Xl < 0, h > 0 follows. Next

we show that g2 − 4h is positive.

g2 − 4h = X2
1{2(ζ1R)2 + (ζ1I)

2}2 +X2
2{2(ζ2R)2 + (ζ2I)

2}2

+ 2X1X2{(ζ1I)2(ζ2I)2 − 2(ζ1R)
2(ζ2I)

2 − 2(ζ1I)
2(ζ2R)

2 − 4(ζ1R)
2(ζ2R)

2}.

By defining z1, z2, and z3 as

z1 = {2(ζ1R)2 + (ζ1I)
2}2,

z2 = (ζ1I)
2(ζ2I)

2 − 2(ζ1R)
2(ζ2I)

2 − 2(ζ1I)
2(ζ2R)

2 − 4(ζ1R)
2(ζ2R)

2,

z3 = {2(ζ2R)2 + (ζ2I)
2}2,

g2−4h is expressed as g2−4h = z1X
2
1+2z2X2X1+z3X

2
2 . Since z1 > 0, if the discriminant

d of this quadratic formula for X1 is negative, g2 − 4h > 0 follows.

d = (z2X2)
2 − z1z3X

2
2 = X2

2 (z
2
2 − z1z3).
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We put z̃1 = 2(ζ1R)
2 + (ζ1I)

2 and z̃3 = 2(ζ2R)
2 + (ζ2I)

2, and obtain

z22 − z1z3 = (z2 + z̃1z̃3)(z2 − z̃1z̃3).

Each factor is calculated as

z2 + z̃1z̃3 = 2(ζ1I)
2(ζ2I)

2 > 0,

z2 − z̃1z̃3 = −4(ζ1R)
2(ζ2I)

2 − 4(ζ1I)
2(ζ2R)

2 − 8(ζ1R)
2(ζ2R)

2 < 0.

Thus, the discriminant is negative and we obtain g2−4h > 0. Therefore, two eigenvalues

λ± of Λ are negative. Thus, the Hessian matrix H at the CA has zero (2-fold) and two

positive eigenvalues. This implies that the free energy of the CA has the shape of a

valley and the CA is stable.

Symmetric mixed solution: S1

We assume R1I = 0 from the rotational symmetry. Thus, we obtain

R1R = R2R , R2I = 0.

The values of ul , RlR, RlI , and R are

u1 =
1

(1 + a)βJ
, u2 =

1

2
, R1R =

x1

2βJ
= R2R, R =

x1√
2βJ

.

Thus, the critical point is T
(S1)
c = (1+a)J

2
. The values of cµµ and cµν are

cµµ =
1

2βJ
+

1− a

4
, cµν =

1

2βJ
− 1− a

4
, (µ 6= ν).

Thus, we obtain

δµν − βJcµν =







1
2
− 1−a

4
βJ, (µ = ν),

−1
2
+ 1−a

4
βJ, (µ 6= ν).

Putting γ ≡ JN(1
2
− 1−a

4
βJ), the Hessian matrix H is expressed as

H =















1R 2R 1I 2I

1R A A− 2γ 0 0

2R A− 2γ A 0 0

1I 0 0 γ −γ

2I 0 0 −γ γ















,

where A = γ − 2JN(βJ)2X1R
2
1R. Its determinant is

|H − λE| = (2A− 2γ − λ)(2γ − λ)2(−λ).

The eigenvalues of this matrix are the following:
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λ = 0, 2(A− γ), 2γ (2-fold).

Let us study the signs of the eigenvalues. We have

2(A− γ) = −2JN(βJ)2X1R
2
1R.

Since Xl < 0, this is positive. Thus, if γ is positive, the solution is stable. The condition

for this is

T >
(1− a)J

2
.

Therefore, the symmetric mixed solution S1 is stable for T > (1−a)J
2

.

4.2 p ≥ 3

Memory pattern: M

Firstly, we study the case of p = 3. The memory pattern exists only when a = 0. We

assume R1I = 0 from the rotational symmetry. Thus, we obtain

R2R = R2I = R3R = R3I = 0.

The values of ul and R are

x1 = x2 = x3 = x4, (71)

u1 = u2 =
1

βJ
, (72)

R =
x1

βJ
. (73)

From Eq. (72), the critical point is T
(M)
c = J

2
. The values of cµµ, cµν , and Plul are

cµµ =
1

βJ
, cµν = 0, (µ 6= ν), Plul =

1

2pβJ
.

Then, we have

δµν − βJcµν = 0, for any µ, ν.

In this solution, Xl =
u′(xl)
xlu(xl)

= X1. Therefore, the Hessian matrix H is expressed as

H =

























1R 2R 3R 1I 2I 3I

1R A 0 0 0 0 0

2R 0 A 0 0 0 0

3R 0 0 A 0 0 0

1I 0 0 0 0 0 0

2I 0 0 0 0 0 0

3I 0 0 0 0 0 0

























,
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where A = −JN(βJ)2R2
1X1. The eigenvalues of this matrix are

λ = A (3-fold) , 0 (3-fold).

Since J > 0, N > 0 and Xl < 0, we obtain

A = −JN(βJ)2R2
1X1 > 0.

Thus, the Hessian matrix H at the memory pattern has zero (3-fold) and three degen-

erate positive eigenvalues. Thus, the memory pattern is stable.

Now, let us consider the case of p > 3. In this case, since R1R 6= 0 and the other

RµR and RνI are zero, we have

HµRνR = Aδµν , (74)

HµRνI = HµIνI = 0, (µ, ν = 1, · · · , p). (75)

Thus, H has p-fold zero eigenvalues and p degenerate positive eigenvalues, A. This is

because the memory pattern is the end point of p−1 different CAs and thus it has p−1

zero eigenvalues and another zero eigenvalue due to the rotational symmetry. Therefore,

the memory pattern is stable for any p when a = 0.

Continuous attractor: CA

Case of a = 0

Similarly to the case of p = 2, the matrix Λ = − H
JN(βJ)2

for p > 2 is given as

H = X











































R2
1 0 0 R1RR2I 0 0 · · · 0 0

0 R2
2 R1RR2I 0 0 0 · · · 0 0

0 R1RR2I R2
1 0 0 0 · · · 0 0

R1RR2I 0 0 R2
2 0 0 · · · 0 0

0 0 0 0 R2
1 0 · · · 0 0

0 0 0 0 0 R2
2 · · · 0 0

...
...

...
...

...
...

. . . 0 0
...

...
...

...
...

... · · · R2
1 0

0 0 0 0 0 0 0 0 R2
2











































.

We solve the eigenvalue problem of this matrix as

|Λ− λE| = λ2(λ−XR2)2(XR2
2 − λ)p−2(XR2

1 − λ)p−2 = 0.

The eigenvalues of the Hessian matrix are zero (2-fold), −JN(βJ)2XR2 > 0 (2-fold),

−JN(βJ)2XR2
1 > 0 ((p − 2)-fold) and −JN(βJ)2XR2

2 > 0 ((p − 2)-fold). Therefore,

the free energy of the CA has the shape of a valley and the CA is stable.
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Case of a > 0

Since the CA does not exist for p > 3, we consider the case of p = 3. It is proved that

R1R = R2R = R3R > 0 can be assumed (see Appendix F). Now, we define a′, b′, and c′

as

a′ = R1RR2R +R1IR2I ,

b′ = R1RR3R +R1IR3I ,

c′ = R2RR3R +R2IR3I .

In Appendix D, we prove that

a′ =
Ξ2
1 − Ξ2

2

8
.

Then, from R1R = R2R = R3R and R2
1R = a′, we obtain

R2
1R =

Ξ2
1 − Ξ2

2

8
= R2R = R3R,

R2
2I =

1

2
{−(R2

1R + 2R2
2R − R2) +

√

(R2
1R + 2R2

2R −R2)2 − 4(a′ − R2
2R)

2}

= −(R2
1R + 2R2

2R −R2) = R2 − 3a′ =
9Ξ2

2 − Ξ2
1

8
,

R2
3I =

1

2
{−(R2

1R + 2R2
2R − R2)−

√

(R2
1R + 2R2

2R − R2)2 − 4(a′ −R2
2R)

2} = 0.

In Appendix F, Ξ1 ≤ 3Ξ2 is derived in order to show that R2
2I ≥ 0 holds. Furthermore,

since R1I = 0, the values of ζlR and ζlI are

ζ1R = 3R1R, ζ2R = ζ4R = R1R, ζ3R = −R1R,

ζ1I = ζ2I = R2I , ζ3I = ζ4I = −R2I .

For the CA, X2 = X3 = X4 follows from u2 = u3 = u4. The Hessian matrix H is

obtained from Eqs. (64)-(66). We define Λ as

Λ = − 4

JN(βJ)2
H.

The components of Λ are

Λ1R1R = 3(3X1 +X2)R
2
1R = Λ2R2R = Λ3R3R ≡ A,

Λ1R2R = (9X1 −X2)R
2
1R = Λ2R1R

= Λ1R3R = Λ3R1R = Λ2R3R = Λ3R2R ≡ B,

Λ1I1I = (X1 + 3X2)R
2
2I = Λ2I2I = Λ3I3I ≡ C,

22/62



J. Phys. Soc. Jpn.

Λ1I2I = (X1 −X2)R
2
2I = Λ2I1I

= Λ1I3I = Λ3I1I = Λ2I3I = Λ3I2I ≡ D,

Λ1R1I = (3X1 +X2)R1RR2I = Λ2R2I = Λ3R3I

= Λ1R2I = Λ2R1I = Λ2R3I = Λ3R2I ≡ E,

Λ1R3I = 3(X1 −X2)R1RR2I = Λ3R1I ≡ G. (76)

We rewrite these components as

A = 3(3X1 +X2)R
2
1R,

B = (9X1 −X2)R
2
1R =

9X1 −X2

3(3X1 +X2)
A = γA,

C = (X1 + 3X2)R
2
2I ,

D = (X1 −X2)R
2
2I =

X1 −X2

X1 + 3X2
C = ωC,

E = (3X1 +X2)R1RR2I ,

G = 3(X1 −X2)R1RR2I =
3(X1 −X2)

3X1 +X2
E = ǫE,

where

γ =
9X1 −X2

3(3X1 +X2)
, ω =

X1 −X2

X1 + 3X2
, ǫ =

3(X1 −X2)

3X1 +X2
.

Owing to the rotational symmetry, the row and column that contain R1I can be omitted.

We call this matrix Λ again,

Λ =





















1R 2R 3R 2I 3I

1R A γA γA E ǫE

2R γA A γA E E

3R γA γA A E E

2I E E E C ωC

3I ǫE E E ωC C





















.

We solve the eigenvalue problem of the reduced matrix,

|Λ− λI| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A− λ γA γA E ǫE

γA A− λ γA E E

γA γA A− λ E E

E E E C − λ ωC

ǫE E E ωC C − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= −2−4{−A(1− γ) + λ} ×
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2{A(1 + 2γ)− λ} E(1− ǫ) E(5 + ǫ)

−2{A(1− γ)− λ} 2{A(1 + γ)− λ} 0 4E

2E(ǫ− 1) 4E 0 2{C(1 + ω)− λ}
2E(ǫ− 1) 0 2{−C(1− ω) + λ} 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We put r = X2

X1
. In addition, C is expressed by A and E as

C =
3(X1 + 3X2)E

2

(3X1 +X2)A
.

Therefore, |Λ− λI| becomes

|Λ− λI| = −2−4{−A(1− γ) + λ} ×
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2
(

27+r
3(3+r)

A− λ
)

4r
3+r

E 2(9+r)
3+r

E

−2
(

4r
3(3+r)

A− λ
)

2
(

2(9+r)
3(3+r)

A− λ
)

0 4E

2−4r
3+r

E 4E 0 2
(

6(1+r)E2

(3+r)A
− λ

)

2−4r
3+r

E 0 −2
(

12rE2

(3+r)A
− λ

)

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −2−4{−A(1− γ) + λ} × (−128)r2

9(3 + r)4
E4 ×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 (27 + r)− 4rvλ 1 9 + r

1− vλ 2(9 + r)− 4rvλ 0 2(3 + r)

3 6(3 + r) 0 6(1 + r)− 2rzλ

3 0 −6 + zλ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(77)

From the coefficient of the determinant, the first eigenvalue is obtained as

λ1 = A(1− γ) = 4X2R
2
1R < 0.

It is proved that the determinant is equal to 0 when λ = 0 is substituted. Thus, the

fourth-order polynomial of λ, Eq. (77), has a factor λ. Thus, by dividing the polynomial

by 2λ, we obtain the following cubic equation:

4r2v2z2λ3 − rvz(12v + 5rz + 27z + 36rv)λ2

+ (27rz2 + 240rvz + r2z2 + 72r2v2 + 72rv2 + 24r2vz)λ

− 432rv − 120rz = 0. (78)

We calculate v and z as

v =
3(3 + r)

4rA
=

2

(Ξ2
1 − Ξ2

2)X2

, z =
(3 + r)A

2rE2
=

12

(9Ξ2
2 − Ξ2

1)X2

.
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Dividing Eq. (78) by 4r2v2z2, we obtain

f(λ) = λ3 + a2λ
2 + a1λ+ a0 = 0,

where

a2 = −1

8

{

(Ξ2
1 − Ξ2

2)(27X1 + 5X2) + 2(9Ξ2
2 − Ξ2

1)(X1 + 3X2)
}

,

a1 =
1

16

{

X2(Ξ
2
1 − Ξ2

2)
2(27X1 +X2) + 2X2(9Ξ

2
2 − Ξ2

1)
2(X1 +X2)

+ 4X2(Ξ
2
1 − Ξ2

2)(9Ξ
2
2 − Ξ2

1)(10X1 +X2)
}

,

a0 = −1

4
X1X

2
2 (Ξ

2
1 − Ξ2

2)(9Ξ
2
2 − Ξ2

1)(11Ξ
2
2 + Ξ2

1).

Since the eigenvalues of a real symmetric matrix are real numbers, the solutions of

f(λ) = 0 should be real numbers. This means that f(λ) = 0 has three real solutions.

Furthermore, f ′(λ) = 0 should have two real solutions. Now, we show that the function

f(λ) has three negative real solutions.

From the relations Xl < 0, Ξ1 > Ξ2, and Ξ1 < 3Ξ2, the coefficients a0, a1, a2 are all

positive. Let ξ and η (ξ < η) be two real solutions of f ′(λ) = 0. The conditions that

f(λ) = 0 has three negative real solutions are the following:

1. f(0) > 0 , 2. η < 0.

We investigate these conditions.

1. Since f(0) = a0 and a0 > 0, f(0) > 0 follows.

2. The first derivative of f(λ) becomes

f ′(λ) = 3λ2 + 2a2λ+ a1 = 0. (79)

Since it has two real solutions, a22 − 3a1 > 0 follows. Then, the solutions of Eq. (79), ξ

and η, are

ξ =
−a2 −

√

a22 − 3a1
3

, η =
−a2 +

√

a22 − 3a1
3

.

Since a1 > 0 and a2 > 0, η < 0 follows.

Therefore, Λ has one zero and four negative eigenvalues. Thus, the Hessian matrix

in the CA has zero (2-fold) and four positive eigenvalues. Therefore, this implies that

the free energy of the CA has the shape of a valley and the CA is stable.

Symmetric mixed solution: S4

We consider the case of p = 3. We assume R1I = 0 from the rotational symmetry. In

addition, we assume R2I = R3I = 0. Then, we obtain R1 = R2 = R3. In Appendix D, it
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is proved that R1R = R2R = R3R is a solution but there is no solution in which one or

more of the signs of R1R, R2R, and R3R are reversed. Below, we assume R1R = R2R =

R3R > 0. The values of ul , RlR, RlI , and R are

u2 = u3 = u4 =
1

1− a

( 4

βJ
− 3(1 + 3a)u1

)

,

R1R =
x1

3βJ
=

x2

βJ
= R2R = R3R, R =

x1√
3βJ

.

x1 is determined by Eq. (D·84). See Appendix D for details.

The values of cµµ and cµν are

cµµ =
3

βJ
− 2(1 + 3a)u1, cµν = − 1

βJ
+ (1 + 3a)u1, (µ 6= ν).

Then, we obtain

δµν − βJcµν =







−2 + 2(1 + 3a)βJu1, (µ = ν),

1− (1 + 3a)βJu1, (µ 6= ν).

In the symmetric mixed solution S4, we have u2 = u3 = u4, x1 = 3x2 = 3x3 = 3x4. The

components of the Hessian matrix are calculated as

H1R1R = 2JN
(

−1 + (1 + 3a)βJu1 − (βJ)3R2
1{

1 + 3a

8

u′(x1)

x1
9 +

1− a

8

u′(x2)

x2
3}
)

= H2R2R ≡ A,

H1R2R = JN
(

1− (1 + 3a)βJu1 − 2(βJ)3R2
1{

1 + 3a

8

u′(x1)

x1

9− 1− a

8

u′(x2)

x2

3}
)

= H1R3R = H2R3R ≡ B,

H1I1I = JN
(

−2 + 2(1 + 3a)βJu1

)

= H2I2I = H3I3I ≡ C,

H1I2I = JN
(

1− (1 + 3a)βJu1

)

= H1I3I = H2I3I ≡ D,

H1R1I = JN
(

−(βJ)3
2p
∑

l=1

Pl

u′(xl)

xl

ηµl η
ν
l ζlRζlI

)

= 0

= H2R2I = H3R3I = H1R2I = H1R3I = H2R3I .
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Thus, H is expressed as

H =

























1R 2R 3R 1I 2I 3I

1R A B B 0 0 0

2R B A B 0 0 0

3R B B A 0 0 0

1I 0 0 0 C D D

2I 0 0 0 D C D

3I 0 0 0 D D C

























.

The characteristic equation of an n × n matrix with the diagonal components A and

the other components B is

{A− λ+ (n− 1)B}(A− λ−B)n−1 = 0.

Thus, we obtain the six eigenvalues of H as

λ = A + 2B, A− B (2-fold), C + 2D, C −D (2-fold).

Let us study the signs of these eigenvalues. A + 2B becomes

A+ 2B = 2JN
(

−1 + (1 + 3a)βJu1 −
1

8
(βJ)3R2

1{(1 + 3a)
u′(x1)

x1
9 + (1− a)

u′(x2)

x2
3}

+1− (1 + 3a)βJu1 −
2

8
(βJ)3R2

1{(1 + 3a)
u′(x1)

x1
9 + (1− a)

u′(x2)

x2
3}
)

= −9

4
JN(βJ)3R2

1

(

(1 + 3a)
u′(x1)

x1
3 + (1− a)

u′(x2)

x2

)

.

Since J > 0, N > 0, xl > 0, 0 < a ≤ 1, and the function ul decreases monotonically, i.e.,

u′
l < 0, we obtain A+ 2B > 0. We find that

C + 2D = 2JN{−1 + (1 + 3a)βJu1 + 1− (1 + 3a)βJu1} = 0.

A−B = C −D is proved as

A− B = JN
(

−2 + 2(1 + 3a)βJu1 −
2

8
(βJ)3R2

1{(1 + 3a)
u′(x1)

x1
9 + (1− a)

u′(x2)

x2
3}

−1 + (1 + 3a)βJu1 +
2

8
(βJ)3R2

1{(1 + 3a)
u′(x1)

x1
9 + (1− a)

u′(x2)

x2
3}
)

= 3JN
(

−1 + (1 + 3a)βJu1

)

= C −D.

Thus, the sign of A − B determines the stability of S4. That is, if this is positive, the
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solution is stable. The condition for this is

−1 + (1 + 3a)βJu1 > 0.

We define g(T ) = u(x1(T )) − y(T ) and y(T ) = T
(1+3a)J

. Then, the above condition is

equivalent to

g(T ) > 0. (80)

The critical point for S4 is T
(S4)
c = (1+2a)J

2
. Thus, we obtain

y(T
(S4)
c ) =

1 + 2a

2(1 + 3a)
<

1

2
.

Since x1( T
(S4)
c )=0, we obtain u(x1( T

(S4)
c )=1/2. Therefore, we obtain g( T

(S4)
c ) > 0.

x1(T ) is determined by the following equation [Eq. (54)]:

T

J
=

3

4
(1 + 3a)u(x1(T )) +

1

4
(1− a)u(

x1(T )

3
). (81)

The derivative x′
1(T ) is calculated as

x′
1(T ) =

12

{9(1 + 3a)u′(x1(T )) + (1− a)u′(x1(T )
3

)}J
.

Since u′ < 0, we obtain x′
1(T ) < 0. The derivative g′(T ) is

g′(T ) = u′(x1(T ))x
′
1(T )− y′(T )

=
12

{9(1 + 3a) + (1− a)
u′(

x1(T )
3

)

u′(x1(T ))
}J

− 1

(1 + 3a)J
.

Let us consider the limit T → 0. As T → 0, L.H.S. of Eq. (81) → 0, and this implies

that u(x1(T )) → 0 as T → 0. Thus, g(+0) = 0. Since we have x1(T ) ≫ 1 when T ∼ 0,

we obtain u(x) ∼ 1
x
. The derivative u′(x) is estimated for x ≫ 1 as

u′(x) ≃ − 1

x2
.

Thus, we obtain for T ∼ 0

u′(x1(T ))x
′
1(T ) ∼ 12

{9(1 + 3a) + (1− a)
x2
1(T )

(
x1
3
)2
}J

∼ 2

3(1 + a)J
.

Therefore, when T → 0, we have

g′(+0) =
2

3(1 + a)J
− 1

(1 + 3a)J

=
3a− 1

3(1 + a)(1 + 3a)J
. (82)

(a) Case of a < 1
3

In this case, from Eq. (82), g′(+0) < 0 follows. Since g(+0) = 0, we obtain g(T ) < 0

28/62



J. Phys. Soc. Jpn.

for 0 < T ≪ 1. Since g(T
(S4)
c ) > 0, there is T that satisfies g(T ) = 0 in (0, T

(S4)
c ). We

write this temperature as T̃ . That is, u(x1(T̃ )) =
T̃

(1+3a)J
at T̃ , and this is simply the

equation for u1 of the CA, see Eq. (48). In addition, for the symmetric mixed solution

S4, from Eqs. (52)-(54), we obtain

u2 = u3 = u4 =
1

1− a

(4T

J
− 3(1 + 3a)u1

)

. (83)

Substituting T = T̃ in Eq. (83), we have

u2(T̃ ) =
T̃

(1− a)J
. (84)

This is the equation to be satisfied for u2 = u3 = u3 of the CA, Eq. (49). Moreover,

for S4, we have the condition x1 = 3x2. Thus, T̃ satisfies the conditions for the critical

temperature T
(CA)
c of the CA. Since T

(CA)
c is unique, we obtain T̃ = T

(CA)
c . Thus, we

obtain g(T ) < 0 for T <T
(CA)
c and g(T ) > 0 for T >T

(CA)
c . Therefore, S4 is stable

for T
(CA)
c < T < T

(S4)
c . Furthermore, we find that S4 and the CA do not coexist. S4 is

stabilized when the CA ceases to exist.

(b) Case of a > 1
3

In this case, since g′(+0) > 0 and g(+0) = 0, we obtain g(T ) > 0 for 0 < T ≪ 1. As

discussed in the above case, if g(T ) = 0, this temperature is the critical temperature

of the CA. However, for a > 1
3
, the CA does not exist. Therefore, g(T ) 6= 0 for 0 <

T ≤T
(S4)
c . Since g(T

(S4)
c ) > 0, g > 0 holds for T ≤ T

(S4)
c . Thus, the solution S4 is always

stable as long as it exists.

In Fig. 4, we show the graph of the functions u(x1(T )) and y(T ) in case (a).

Fig. 4. Functions u(x1(T )) and y(T ).
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5. Numerical results

We perform MCMCs. We set J = 1 in all simulations.

5.1 Phase diagram in (a, T ) plane

In Fig. 3, we displayed the phase diagram in the (a, T ) plane. We performed MCMCs

with N = 20000. The numerical method used to obtain stationary states is as follows.

As an initial condition, we take ξ1, and add a perturbation −h
∑N

j=1 cos(φj − φ1
j) with

h = 0.005 to the Hamiltonian H in Eq. (1). Here, φµ
j is defined by ξµj = eiφ

µ
j for

µ = 1, 2, · · · , p. After the system settles to a stationary state, we identify the state as

follows:

Para: |R1 −R2| < 0.02, |R1 −R3| < 0.02, and R1 < 0.05.

S4: |R1 − R2| < 0.02, |R1 − R3| < 0.02, and R1 > 0.05.

CA: R1 is greater than R2 by more than 0.02. In order to confirm that the final state

obtained numerically is really the CA state, we change the perturbation to a new

perturbation, −h
∑N

j=1 cos(φj − φ2
j) with h = 0.005, add it to the final state, and check

that the new final state satisfies R2 − R1 > 0.02.

As seen from Fig. 3, the theoretical and numerical results agree reasonably well.

5.2 Temperature dependences of order parameters

First of all, we show theoretical and numerical results of the temperature dependence

of the order parameter R in Fig. 5 for a = 0 and in Fig. 6 for a = 0.1. In the numerical

simulations, N is set to 104, and the total number of Monte Carlo sweeps (MC sweeps)

is 104. Here, one MC sweep corresponds to N updates of the XY spins. We took the

average during the last 5000 MC sweeps. Furthermore, we took the sample average over

50 samples. We display the average and the standard deviation for R, but the latter is

too small to observe. The theoretical and numerical results agree reasonably well.
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Fig. 5. Temperature dependences of R for a = 0. Solid curve: theoretical results of the CA. Symbols:

simulation results with error bars. (a) p = 2, (b) p = 3.
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Fig. 6. Temperature dependences of R for a = 0.1. Curves: theoretical results. Solid curve: CA.

Symbols: simulation results with error bars. (a) p = 2. Dotted curve: S1. (b) p = 3. Dotted curve: S4.

5.3 Maximum number of patterns for which the CA exists

Next, we study the maximum number of patterns pc for which the CA exists. The-

oretically, as long as the self-averaging property holds, pc can take any value for a = 0,

whereas pc = 3 for 0 < a < 1
3
and pc = 2 for a > 1

3
.

We perform MCMCs for N = 4000 and 8000 and T = 0.1. We draw Rµ from 0

to 20000 MC sweeps at intervals of 100 MC sweeps. We set the initial configuration

as the CA in order to reduce the time to reach the CA when it exists. We used the
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following criterion to judge whether the resultant solution is the CA. From 104 to

20000 MC sweeps, at every MC sweep we selected the largest and second largest values

of {Rµ}, say, R1st and R2nd. We defined ∆R = R1st −R2nd and calculated the standard

deviation of ∆R, σR. We took 10 samples, and obtained 10 σR. We selected the largest

one among the σR, say, σ
max
R . If σmax

R exceeded some value, σ∗, we judged that the CA

exists. Empirically, σ∗ = 0.1 gave reasonable results.

Case of a = 0

We show the numerical results in Fig. 7 for N = 8000. It seems that the CA exists until

p = 36. Let us study the condition for the existence of the CA for finite N . In finite-size
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Fig. 7. Time series of Rµs. a = 0, N = 8000. mcs denotes Monte Carlo sweeps. (a) p = 25, (b)

p = 31, (c) p = 35, (d) p = 36.

systems, in order that the self-averaging property holds, 2p < N should be satisfied.

Thus, the critical pc for the number of spins N is estimated from 2pc ∼ N . Thus,

pc ≈ 1
ln 2

lnN . When N = 4000 and 8000, 1
ln 2

lnN ≃ 12 and 13, respectively. These

estimates are consistent with the numerical results of pc ∼ 20 and 30, respectively.

Case of a > 0

We perform MCMCs for a = 0.1. Numerical results are shown in Fig. 8 for N = 8000.

Note that the CA exists only for p = 2 and 3 as the theory predicts.

5.4 Addition of noise to patterns

When a > 0, we theoretically and numerically found that the CA exists only for

p = 2 and 3, although when a = 0, pc can take any value as long as the self-averaging

property holds theoretically, and pc ∼ lnN numerically. In realistic situations, there

is external noise. Therefore, we study the case that patterns are subject to external

noise when a > 0. It is expected that we can produce similar situations to the case of

a = 0 and make the CA reappear by the addition of noise because noise reduces the
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Fig. 8. Time series of Rµ. a = 0.1, N = 8000. (a) p = 2, (b) p = 3, (c) p = 4, (d) p = 5.

correlation among patterns.

Noise is introduced in such a way that the sign of each pattern ξµi is reversed with

some probability, say λ. Then, for 0 < λ ≤ 1, the substantial correlation a′ between any

two patterns becomes a′ = (1− 2λ)2a for λ ≤ 1
2
and a′ = −(1− 2λ)2a for λ > 1

2
. Thus,

as λ → 1
2
, a′ → 0. Fixing a = 0.1 and T = 0.1, we performed MCMCs for N = 8000

and for several values of p and λ. We set the initial configuration at random.

We took 10 samples, calculated the standard deviation σR, and determined the

maximum of σR, σ
max
R , as before. We show the time series of Rµ for the sample with

σmax
R in Figs. 9-11. We find that pc increases from 3 as λ increases as expected. For

example, pc is 4, 4, and 6 for λ = 0.2, 0.25, and 0.3, respectively.
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Fig. 9. Time series of Rµ. λ = 0.2, N = 8000. (a) p = 4, (b) p = 5, (c) p = 6.
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Fig. 10. Time series of Rµ. λ = 0.25, N = 8000. (a) p = 4, (b) p = 5, (c) p = 6.
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Fig. 11. Time series of Rµ. λ = 0.3, N = 8000. (a) p = 4, (b) p = 5, (c) p = 6.
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6. Summary and Discussion

We have analyzed the classical XY model with the associative-memory-type inter-

action for the case that N ≫ 1 and the self-averaging property holds, with and without

the correlation a between any two patterns.

Firstly, we summarize the theoretical results. In Table III, we list the stable solutions.

a = 0 a > 0

p = 2 Continuous attractor (T < J
2 ) Continuous attractor (T <

(1−a)J
2 )

Memory pattern (T < J
2 ) Symmetric mixed solution S1 ( (1−a)J

2 < T <
(1+a)J

2 )

p = 3 Continuous attractor (T < J
2 ) Continuous attractor (T < T

(CA)
c )

Memory pattern (T < J
2 ) Symmetric mixed solution S4 (T

(CA)
c < T <

(1+2a)J
2 )

Table III: Stable solutions for p = 2 and 3.

For general p, we studied the condition for the existence of the CA. When a = 0, the

CA exists for any p and is stable as long as it exists. Among the overlaps with memory

patterns, {Rµ}, only two are nonzero. The critical temperature is T
(CA)
c = J

2
for any p.

Since memory patterns are located at both ends of the CA, their stabilities are the same

as that of the CA. On the other hand, when a > 0, the CA exists only when p = 2 and

3. The reason for this is that the number of conditions becomes larger than the number

of independent variables for p ≥ 4. The CA exists and is stable for T <T
(CA)
c (= (1−a)J

2
)

when p = 2. The symmetric mixed solution S1 exists for T < T
(S4)
c (= 1+a

2
J). It is

unstable for 0 < T <T
(CA)
c and becomes stable when the CA disappears. That is, a

coexistence region of the CA and the symmetric mixed solution S1 does not exist.

When p = 3, the CA exists and is stable below T
(CA)
c , which is determined by x1 = 3x2.

A pure memory pattern does not exist when a 6= 0, but its modified version appears at

both ends of the CA. The symmetric mixed solution S4 exists for T < T
(S4)
c (= 1+2a

2
J).

It is unstable for 0 < T < T
(CA)
c and becomes stable when the CA disappears. That is, a

coexistence region of the CA and the symmetric mixed solution S4 does not exist as in

the case of p = 2. For p = 2 and 3 and for both a = 0 and a > 0, several other solutions

exist but all of them are unstable.

Secondly, we summarize the numerical results. We performed MCMCs and calcu-

lated the critical number of patterns pc until which the CA exists. When a = 0, the CA

exists until pc ∼ 20 and ∼ 30 for N = 4000 and 8000, respectively. Theoretically, the

CA exists and is stable for any p as long as the self-averaging property holds. The reason
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for this disagreement is considered to be due to the breakdown of the self-averaging in

the finite size system. We estimated pc for finite N as pc ∼ lnN/ ln 2 and we found that

this is consistent with numerical results. On the other hand, when a > 0, the CA exists

until pc = 3 for N = 8000. This result completely agreed with the theoretical result.

Furthermore, for a > 0, we added external noise to the components of patterns, because

we expected that the correlation between patterns would be weakened by the addition

of noise to patterns. By MCMCs, we found that pc increases from 3 as the probability

λ that each component is reversed increases as expected.

Now, let us consider the meaning of the existence of the CA when the present model

is regarded as an associative memory model. In real brains, after a memory is retrieved,

another memory is sometimes spontaneously retrieved without any stimulation, or when

an external stimulus is applied, a memory that is related to the stimulus is retrieved.

That is, it seems that many memories in a real brain are “connected” in a sense. Such

phenomena do not take place for models that have only point attractors such as models

composed of the Ising spins. On the other hand, in the present model, the CA exists

between any two embedded patterns. Thus, after a pattern ξµ is retrieved, another

pattern can be retrieved spontaneously. Moreover, if an external stimulus that lies on

a path from pattern ξµ to pattern ξν is added, pattern ξν is retrieved. That is, the CA

is considered to be able to realize the feature of real brains mentioned above.

Finally, we list several future problems. The first is to examine the system size N

dependence of the critical number of patterns pc for a = 0. Extensive theoretical and

numerical studies are necessary. The second is the theoretical analysis of the effects of

adding external noise for a > 0 in order to make the CA reappear. The third one is to

extend the present study to the case that patterns are divided into clusters in such a

way that patterns in any cluster are correlated but those in two different clusters are

not correlated.
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Appendix A: Derivation of Free Energy and Saddle Point Equations

The associative memory interaction is expressed as

Jij =
J

N

p
∑

µ=1

ξµi ξ
µ
j . (A·1)

The order parameter is defined as follows:

RµR =
1

N

N
∑

i=1

ξµi cosφi, (A·2)

RµI =
1

N

N
∑

i=1

ξµi sinφi. (A·3)

The Hamiltonian of the classical XY model is

H = −
∑

i<j

JijX i ·Xj (A·4)

= −NJ

2

p
∑

µ=1

{(RµR)
2 + (RµI)

2}+ Jp

2
. (A·5)

In order to analyze the XY model by the method of statistical mechanics, we in-

troduce the temperature T and calculate the partition function Z. We put kB = 1, so

β = 1
T
. The partition function Z is expressed as

Z =

∫ 2π

0

dΦe
NβJ

2

∑p
µ=1{(RµR)2+(RµI )

2}−βJp
2 , (A·6)
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where
∫ 2π

0
dΦ =

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφN . By the HubbardStratonovich−transformation, we

obtain

Z = e−
βJ
2
p
∫ 2π

0
dΦ

∫

dy1c · · · dypcdy1s · · ·dyps
(
√

NβJ

2π

)2p

eĤ , (A·7)

where we define

Ĥ = −NβJ

2

p
∑

µ=1

(

(yµc )
2 + (yµs )

2

)

+ βJ

p
∑

µ=1

(

yµc

N
∑

j=1

ξµj cosφj + yµs

N
∑

j=1

ξµj sinφj

)

.

(A·8)

By performing integration with respect to φ1, · · · , φN , we obtain

Z = C

∫

dy1c · · · dypcdy1s · · · dypseNf ,

Nf = ln

∫ 2π

0

dΦeĤ (A·9)

= −NβJ

2

N
∑

µ=1

{(yµc )2 + (yµs )
2}+

N
∑

j=1

ln(2πI0(βJΞj)), (A·10)

Ξj =

√

√

√

√(

p
∑

µ=1

ξµj y
µ
c )2 + (

p
∑

µ=1

ξµj y
µ
s )2, (A·11)

where the constant C =
(
√

NβJ

2π

)2p

e−
βJ
2
p is of order 1 and Nf is of order N . Since we

consider the case N ≫ 1, we evaluate Z by the saddle point method.

Z ≃ CeNf((y1c )
∗(y2c )

∗···(ypc )∗(y1s)∗···(yps )∗) = CeNf∗

Here, (yµc )
∗ , (yµs )

∗ is the saddle point of f , and f ∗ is the value of f at the saddle point.

Therefore, the free energy becomes

F = − 1

β
lnZ ≃ − 1

β
Nf ∗.

By using (A·9), we calculate ∂f

∂y
µ
c
= 0 and ∂f

∂y
µ
s
= 0 as

(yµc )
∗ = 〈RµR〉 =

1

N

N
∑

i=1

ξµi 〈cosφi〉, (A·12)

(yµs )
∗ = 〈RµR〉 =

1

N

N
∑

i=1

ξµi 〈sinφi〉, (A·13)
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where 〈A〉 =
∫ 2π
0

eĤAdΦ
∫ 2π
0 eĤdΦ

. By performing the integration, we obtain

〈RµR〉 =
1

N

N
∑

j=1

p
∑

ν=1

I1(βJΞj)

I0(βJΞj)
ξµj ξ

ν
j

1

Ξj

(yνc )
∗, (A·14)

〈RµI〉 =
1

N

N
∑

j=1

p
∑

ν=1

I1(βJΞj)

I0(βJΞj)
ξµj ξ

ν
j

1

Ξj

(yνs )
∗. (A·15)

Hereafter, we write 〈RµR〉 and 〈RµI〉 as RµR and RµI , respectively, for simplicity. Then,

the SPEs are

RµR =
1

N

N
∑

j=1

p
∑

ν=1

I1(βJΞj)

I0(βJΞj)
ξµj ξ

ν
j

1

Ξj

RνR, (A·16)

RµI =
1

N

N
∑

j=1

p
∑

ν=1

I1(βJΞj)

I0(βJΞj)
ξµj ξ

ν
j

1

Ξj

RνI . (A·17)

From Eq. (A·10), the free energy is

F =
NJ

2
R2 − 1

β

N
∑

j=1

ln(2πI0(βJΞj)),

where

Ξj =

√

√

√

√(

p
∑

µ=1

ξµj RµR)2 + (

p
∑

µ=1

ξµj RµI)2.

Now, we define the average of all {ξµj } as
[

A({ξµ})
]

. By the self-averaging property, we

obtain

1

N

N
∑

j=1

A({ξµj }) =
[

A({ξµ})
]

.

Then, the free energy and SPEs are rewritten as

F =
NJ

2
R2 − N

β
ln(2πI0(βJΞj))], , (A·18)

RµR = βJ

p
∑

ν=1

cµνRνR, , (A·19)

RµI = βJ

p
∑

ν=1

cµνRνI , , (A·20)

cµν =
[

u(xj)ξ
µ
j ξ

ν
j

]

, (A·21)

where xj = βJΞj and u(xj) =
I1(xj)

xI0(xj)
.
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Appendix B: Properties of the Function u(x)

We describe the properties of u(x) = I1(x)
xI0(x)

. The modified Bessel function of the

first kind Iν(z) is defined for the complex number z and the real number ν, which is

an analytic function of z, and when z is real, the function is real. We use the following

formula for Iν(z):
9)

( d

zdz

)n

(z−νIν(z)) = z−ν−nIν+n(z). (B·1)

Iµ(z)Iν(z) =
2

π

∫ π
2

0

Iµ+ν(2z cos θ) cos{(µ− ν)θ}dθ. (B·2)

Re(µ+ ν) > −1.

When ν is an integer n, In(x) is expressed as follows:

In(x) =
1

π

∫ π

0

ex cosφ cos(nφ)dφ.

In this case, In(x) > 0 for x > 0, I0(0) = 1, and In(0) = 0 (n > 0). u(x) ≡ I1(x)
xI0(x)

is

C∞ for any real value x, and u(0) = 1
2
follows. We put n = 1 , ν = 1, and z = x in Eq.

(B·1) and obtain

d

dx
(x−1I1(x)) = x−1I2(x).

Thus,

d

dx
u(x) =

1

xI0(x)2
(I2(x)I0(x)− I1(x)

2). (B·3)

Subtracting Eq. (B·2) with µ = 1, ν = 1, and z = x > 0 from that with µ = 2 , ν = 0,

and z = x > 0, we obtain

I2(x)I0(x)− I1(x)
2 =

2

π

∫ π
2

0

I2(2x cos θ)
{

cos(2θ)− 1
}

dθ.

For x > 0, 2x cos θ is greater than or equal to zero in the range of integration. Then

I2(2x cos θ) ≥ 0, and the integral is negative. Thus, u′(x) < 0 for x > 0. By the saddle

point method, the asymptotic form for x ≫ 1 is

In(x) ≃ 1

2π

∫ ∞

−∞
ex(1−

φ2

2
)dφ = ex

1√
2πx

. (B·4)

Therefore, for x ≫ 1 we obtain

u(x) ≃ 1

x
.

When x → ∞, u(x) → 0.

40/62



J. Phys. Soc. Jpn.

Appendix C: Proof of Relations for {ηµ
l }

We denote the value of ξµi in the lth sublattice as η
µ,(p)
l when the number of patterns

is p (≥ 2). Firstly, we summarize the relations among η
µ,(p)
l :

η
1,(p)
l = 1, (p ≥ 2, l = 1, · · · , 2p−1), (C·1)

η
µ,(p)

l+2p−1 = −η
µ,(p)
l , (p ≥ 2, l = 1, · · · , 2p−1, µ = 1, · · · , p), (C·2)

η
µ,(p+1)
l = η

µ−1,(p)
l , (p ≥ 2, l = 1, · · · , 2p, µ = 2, · · · , p). (C·3)

We show these relations in the cases of p = 2 and 3 in Fig. C·1.

Fig. C·1. Relations among η
µ,(2)
l and η

µ,(3)
l .

The following relation is derived from Eq. (C·2):
2p
∑

l=1

η
1,(p)
l = 0. (C·4)

Let us prove the following:

2p−1
∑

l=1

η
µ,(p)
l = 0, (p = 2, 3, · · · ), (µ = 2, 3, · · · , p). (C·5)

In the case of p = 2, this is obvious from Fig. C·1. For general p ≥ 3 and µ 6= 1, the

left-hand side of Eq. (C·5) becomes

2p−1
∑

l=1

η
µ,(p)
l =

2p−1
∑

l=1

η
µ−1,(p−1)
l =

2p−2
∑

l=1

η
µ−1,(p−1)
l +

2p−2
∑

l=1

η
µ−1,(p−1)

l+2p−2 . (C·6)

From Eq. (C·2), it becomes zero. By using these relations, we prove the equations used
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in the main text by the inductive method.

Proof of Eq. (33)

From Eq. (C·2), Eq. (33) can be written as

2p
∑

l=1

η
µ,(p)
l η

ν,(p)
l = 2pδµν . (C·7)

When µ = ν, this is trivial. Thus, let us study the case of ν 6= ν.

(i) Case of p = 2

From Fig. C·1, we obtain

L.H.S. =

4
∑

l=1

η
µ,(2)
l η

ν,(2)
l = η

µ,(2)
1 η

ν,(2)
1 + η

µ,(2)
2 η

ν,(2)
2 + η

µ,(2)
3 η

ν,(2)
3 + η

µ,(2)
4 η

ν,(2)
4 = 0.(C·8)

Thus, Eq. (C·7) is proved.
(ii) Case of p = m (≥ 2)

We assume the following:

2m
∑

l=1

η
µ,(m)
l η

ν,(m)
l = 0, (µ 6= ν). (C·9)

For p = m+ 1, let us prove the following:

2m+1
∑

l=1

η
µ,(m+1)
l η

ν,(m+1)
l = 0, (µ 6= ν). (C·10)

It is necessary to consider the case that µ or ν is equal to 1 and the case that µ and ν

are not equal to 1.

(ii)-(a) The case that µ and ν are not equal to 1

η
τ,(m+1)
l (τ 6= 1 , l = 1, · · · , 2m) is equal to η

τ−1,(m)
l . Thus, by Eqs. (C·2), (C·3), and

(C·9), we have

L.H.S. of Eq. (C·10) = 2

2m
∑

l=1

η
µ,(m+1)
l η

ν,(m+1)
l = 2

2m
∑

l=1

η
µ−1,(m)
l η

ν−1,(m)
l = 0.

(ii)-(b) The case that µ or ν is equal to 1

We assume µ = 1 without loss of generality. By definition, we have

η
1,(m+1)
l = −η

1,(m+1)
l+2m = 1, (l = 1, · · · , 2m).

Since ν > 1, from Eqs. (C·2) and (C·5), we have

L.H.S. of Eq. (C·10) = 2
2m
∑

l=1

η
1,(m+1)
l η

ν,(m+1)
l = 1× 2

2m
∑

l=1

η
ν,(m+1)
l = 0.

This completes the proof.
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Proof of Eq. (70)

Let us prove Eq. (70),

2p−1
∑

l=1

ηµl η
ν
l η

1
l η

2
l =







2p−1, (µ, ν) = (1, 2) or (2, 1),

0, other cases.

From Eq. (C·2), this is also expressed as follows:

2p
∑

l=1

ηµl η
ν
l η

1
l η

2
l =







2p, (µ, ν) = (1, 2) or (2, 1),

0, other cases.
(C·11)

When µ = ν, this holds from Eq. (C·7). We next prove Eq. (C·11).
(i) Case of p = 2

From Fig. C·1,

L.H.S. of Eq. (C·11) =

4
∑

l=1

η
µ,(2)
l η

ν,(2)
l η

1,(2)
l η

2,(2)
l

= η
µ,(2)
1 η

ν,(2)
1 η

1,(2)
1 η

2,(2)
1 + η

µ,(2)
2 η

ν,(2)
2 η

1,(2)
2 η

2,(2)
2

+ η
µ,(2)
3 η

ν,(2)
3 η

1,(2)
3 η

2,(2)
3 + η

µ,(2)
4 η

ν,(2)
4 η

1,(2)
4 η

2,(2)
4

=







4 (µ, ν) = (1, 2) or (2, 1)

0 µ = ν

= R.H.S. of Eq. (C·11).

Therefore, Eq. (C·11) holds.
(ii) Case of p = m (≥ 2)

We assume that Eq. (C·11) is true,
2m
∑

l=1

η
µ,(m)
l η

ν,(m)
l η

1,(m)
l η

2,(m)
l =







2m, (µ, ν) = (1, 2) or (2, 1),

0, other cases.

Let us prove the following:

2m+1
∑

l=1

η
µ,(m+1)
l η

ν,(m+1)
l η

1,(m+1)
l η

2,(m+1)
l =







2m+1, (µ, ν) = (1, 2) or (2, 1),

0, other cases.
(C·12)

When µ 6= ν, it is necessary to consider the case that µ or ν is equal to 1 and the case

that µ and ν are not equal to 1.

(ii)-(a) The case that both µ and ν are not equal to 1
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The left-hand side of Eq. (C·12) is calculated as

L.H.S. of Eq. (C·12) = 2
2m
∑

l=1

η
µ,(m+1)
l η

ν,(m+1)
l η

1,(m+1)
l η

2,(m+1)
l .

For l ≤ 2m, using η
1,(m+1)
l = 1 and η

τ,(m+1)
l = η

τ,(m)
l for τ ≥ 2, it is rewritten as

2

2m
∑

l=1

η
µ−1,(m)
l η

ν−1,(m)
l η

1,(m)
l .

Furthermore, we decompose the sum using Eq. (C·2),

= 2
[

2m−1
∑

l=1

η
µ−1,(m)
l η

ν−1,(m)
l η

1,(m)
l +

2m
∑

l=2m−1+1

η
µ−1,(m)
l η

ν−1,(m)
l η

1,(m)
l

]

= 2
[

2m−1
∑

l=1

η
µ−1,(m)
l η

ν−1,(m)
l η

1,(m)
l −

2m−1
∑

l=1

η
µ−1,(m)
l η

ν−1,(m)
l η

1,(m)
l

]

= 0.

In the present case, the R.H.S. of Eq. (C·12) is zero and Eq. (C·12) holds.
(ii)-(b) The case that µ or ν is equal to 1

We assume µ = 1 without loss of generality,

L.H.S. of Eq. (C·12) =

2m+1
∑

l=1

η
1,(m+1)
l η

ν,(m+1)
l η

1,(m+1)
l η

2,(m+1)
l

= 1×
2m+1
∑

l=1

η
ν,(m+1)
l η

2,(m+1)
l .

By using Eq. (C·7), we find that the above equation becomes 2m+1δ2,ν . Therefore,

=







2m+1, (µ, ν) = (1, 2),

0, µ = 1, ν 6= 1, 2.

This completes the proof.

Appendix D: Derivation of All Solutions of the SPEs for p ≤ 3

D.1 Case of p = 2

Because of the rotational symmetry, R1I = 0 is assumed. There are three variables,

R1R, R2R, and R2I . Without loss of generality, hereafter we assume R1R > 0. When

p = 2, the probability Pl is

P1 = P3 =
1 + a

4
,

P2 = P4 =
1− a

4
.
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By definition, cµν and Ξ2
l are

c11 = 2P1u1 + 2P2u2 = c22, (D·1)

c12 = 2P1u1 − 2P2u2 = c21, (D·2)

Ξ2
1 = R2 + 2R1RR2R, (D·3)

Ξ2
2 = R2 − 2R1RR2R. (D·4)

The SPEs are

R1R = βJ(c11R1R + c12R2R), (D·5)

R2R = βJ(c12R1R + c11R2R), (D·6)

R1I = βJ(c11R1I + c12R2I), (D·7)

R2I = βJ(c12R1I + c11R2I). (D·8)

I. R2 = 0. Memory pattern: M

From the above equations, Ξ1 = Ξ2 = R, βJc11 = 1, and c12 = 0 follow. From these,

x1 = x2 and u1 = u2 follow. Thus, from c12 = 0, P1 = P2 is derived. Thus, the memory

pattern exists only for a = 0. The critical temperature is obtained from u1(0) = 1
βJ
,

that is, T
(M)
c = J

2
. Therefore, Eqs. (37)-(39) in the main text follow.

II. R2I 6= 0. Continuous attractor: CA

From Eq. (D·8), c11 = 1
βJ

follows. Substituting this into Eq. (D·6), because R1R 6= 0,

c12 = 0 follows. Using these relations, from Eqs. (D·1) and (D·2), we obtain P1u1 = P2u2

and

u1 =
1

(1 + a)βJ
, (D·9)

u2 =
1

(1− a)βJ
. (D·10)

From Eqs. (D·3) and (D·4), we obtain

Ξ2
1 + Ξ2

2 = 2R2.

Therefore,

R =

√

Ξ2
1 + Ξ2

2√
2

=

√

x2
1 + x2

2√
2βJ

. (D·11)

If a = 0, u1 = u2 and x1 = x2 follow. Thus, R = x1

βJ
= Ξ1. From Eq. (D·3), we obtain
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R1RR2R = 0. Since R1R > 0, R2R = 0 follows. Therefore,

R2 = R2
1R +R2

2I .

Thus, either R1R or R2I can freely change, that is, this solution is a one-parameter

family. Therefore, it is a continuous solution. Next, we consider the case of a 6= 0. From

Eqs. (D·3) and (D·4), R2R is expressed as

R2R =
1

4R1R

(Ξ2
1 − Ξ2

2).

From the definition of R, R2I is

R2
2I = R2 − R2

1R − R2
2R.

Thus, R2R and R2I are functions of R1R. From the condition R2
2I ≥ 0, we obtain

Ξ1 − Ξ2

2
≤ R1R ≤ Ξ1 + Ξ2

2
. (D·12)

Since this solution is a one-parameter family, it is a continuous solution. The critical

temperature is determined by u2(0) =
1

(1−a)βJ
. That is, T

(CA)
c = (1−a)J

2
.

III. R2 6= 0 , R2I = 0

Because R1R and R2R 6= 0, from Eqs. (D·5) and (D·6), we obtain

{βJ(c11 + c12)− 1}{βJ(c11 − c12)− 1} = 0.

We study the two cases of A βJ(c11 + c12) = 1 and B βJ(c11 − c12) = 1 separately.

III-A. Case of βJ(c11 + c12) = 1

By adding Eqs. (D·1) and (D·2), we obtain c11 + c12 = 4P1u1. Thus, we have

u1 =
1

(1 + a)βJ
. (D·13)

From this, x1 is determined. By using βJ(c11 + c12) = 1, Eq. (D·5) becomes

c12(R1R − R2R) = 0.

We study the two cases of A-1 c12 = 0 and A-2 R1R = R2R separately.

III-A-1. c12 = 0. Continuous attractor: CA

From Eq. (D·5), we obtain c11 = 1
βJ
. Therefore, we have two conditions, c11 = 1

βJ
and

c12 = 0, as in case II. Thus, this is the continuous solution and Eqs. (D·9) and (D·10)
hold. In this case, we have

R2 = R2
1R +R2

2R. (D·14)

III-A-2. R1R = R2R. Symmetric mixed solution: S1
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Since R1I = R2I = 0, we obtain

R1 = R2 =
x1

2βJ
, R =

x1√
2βJ

. (D·15)

From these relations, x2 = 0, u2 =
1
2
, and Eq. (43) follow. From Eq. (D·13), the critical

temperature is T
(S1)
c = (1+a)J

2
.

III-B. βJ(c11 − c12) = 1.

From Eqs. (D·1) and (D·2), we obtain c11 − c12 = 4P2u2. Thus, we have

u2 =
1

(1− a)βJ
. (D·16)

By using βJ(c11 − c12) = 1, Eq. (D·5) becomes

c12(R1R +R2R) = 0.

We study the two cases of B-1 c12 = 0 and B-2 R1R = −R2R separately.

III-B-1. c12 = 0. Continuous attractor

Since c11 =
1
βJ

follows, this is the CA.

III-B-2. R1R = −R2R. Symmetric mixed solution: S2

Since R1R = −R2R and R1I = R2I = 0, we obtain

R2 = R2
1 +R2

2 = 2R2
1. (D·17)

From Eqs. (D·3) and (D·4), we obtain

Ξ2
1 = R2 − 2R2

1 = 0, (D·18)

Ξ2
2 = R2 + 2R2

1 = 2R2. (D·19)

Thus, x1 = 0 because Ξl =
xl

βJ
. Thus, u1 = 1/2. Therefore,

R =
x2√
2βJ

, (D·20)

R1 = R2 =
x2

2βJ
. (D·21)

The critical point is T
(S2)
c = (1−a)J

2
.

D.2 Case of p = 3

Because of the rotational symmetry, R1I = 0 is assumed. There are five variables,

R1R, R2R, R2I , R3R, and R3I . Hereafter, we assume R1R > 0 without loss of generality.
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When p = 3, the probability Pl is

P1 =
1 + 3a

8
= P5,

P2 =
1− a

8
= P3 = P4 = P6 = P7 = P8.

From the definition of cµν and Ξl, we obtain

c11 = 2P1u1 + 2P2(u2 + u3 + u4) = c22 = c33, (D·22)

c12 = 2P1u1 + 2P2(u2 − u3 − u4) = c21, (D·23)

c13 = 2P1u1 + 2P2(−u2 − u3 + u4) = c31, (D·24)

c23 = 2P1u1 + 2P2(−u2 + u3 − u4) = c32, (D·25)

Ξ2
1 = R2 + 2a′ + 2b′ + 2c′, (D·26)

Ξ2
2 = R2 + 2a′ − 2b′ − 2c′, (D·27)

Ξ2
3 = R2 − 2a′ − 2b′ + 2c′, (D·28)

Ξ2
4 = R2 − 2a′ + 2b′ − 2c′, (D·29)

where

a′ = R1RR2R +R1IR2I , (D·30)

b′ = R1RR3R +R1IR3I , (D·31)

c′ = R2RR3R +R2IR3I . (D·32)

The SPEs become

R1R = βJ(c11R1R + c12R2R + c13R3R), (D·33)

R2R = βJ(c12R1R + c11R2R + c23R3R), (D·34)

R3R = βJ(c13R1R + c23R2R + c11R3R), (D·35)

R1I = 0, (D·36)

R2I = βJ(c11R2I + c23R3I), (D·37)

R3I = βJ(c23R2I + c11R3I). (D·38)

I. (R2, R3) = (0, 0). Memory pattern: M

From the SPEs, c11 = 1
βJ

and c12 = c13 = 0 follow. Since a′ = b′ = c′ = 0, Ξ1 = Ξ2 =

Ξ3 = Ξ4 = R, u1 = u2 = u3 = u4, and c23 = 0 follow. Thus, the memory pattern exists
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only for a = 0 and Eqs. (46) and (47) are derived. The critical temperature is T
(M)
c = J

2
.

II. (R2I , R3I) 6= (0, 0)

From Eqs. (D·37) and (D·38), we obtain

(1− βJc11)
2 − (−βJc23)

2 = 0, (D·39)

{βJ(c11 + c23)− 1}{βJ(c11 − c23)− 1} = 0. (D·40)

Since R1R > 0, from Eqs. (D·33)-(D·35) and Eq. (D·39), we obtain

−(βJc11 − 1)(c212 + c213) + 2βJc12c13c23 = 0. (D·41)

We study the two cases of A βJ(c11 + c23) = 1 and B βJ(c11 − c23) = 1 separately.

II-A. βJ(c11 + c23) = 1.

By using βJ(c11 + c23) = 1, Eq. (D·41) becomes

c23(c12 + c13)
2 = 0. (D·42)

We study the two cases of A-1 c23 = 0 and A-2 c23 6= 0 separately.

II-A-1. c23 = 0. Continuous attractor: CA

From Eqs. (D·37) and (D·38), we obtain c11 = 1
βJ
. From Eqs. (D·34) and (D·35), we

obtain c12 = c13 = 0. From c12 = c13 = c23 = 0, we obtain u2 = u3 = u4 and

P1u1 = P2u2. From Eq. (D·22), we obtain 8P1u1 = c11. Since c11 =
1
βJ
, we obtain

u1 =
1

8P1βJ
=

1

(1 + 3a)βJ
, (D·43)

u2 =
P1

P2
u1 =

1

(1− a)βJ
. (D·44)

From Eqs. (D·43) and (D·44), x1 and x2 = x3 = x4 are uniquely determined. From the

relation xl = βJΞl, Ξl is determined. From Eqs. (D·27)-(D·29), we obtain a′ = b′ = c′.

Thus, we have

Ξ2
1 = R2 + 6a′, (D·45)

Ξ2
2 = R2 − 2a′ = Ξ2

3 = Ξ2
4. (D·46)

Subtracting both sides of Eq. (D·46) from those of Eq. (D·45), we obtain

a′ =
x2
1 − x2

2

8(βJ)2
. (D·47)

Because a′ = b′, we have

R2R =
a′

R1R

=
b′

R1R

= R3R. (D·48)
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On the other hand, adding both sides of Eq. (D·45) to those of Eq. (D·46), we obtain

R2 =
1

2
(Ξ2

1 + Ξ2
2 − 4a′) =

x2
1 + 3x2

2

4(βJ)2
. (D·49)

From Eq. (D·48) and a′ = b′ = c′ = R2
2R +R2IR3I , we obtain

R2IR3I = a′ − R2
2R.

In addition, from the definition of R2, we obtain R2
2I +R2

3I = R2 −R2
1R − 2R2

2R. Thus,

we obtain

R4
2I + (R2

1R + 2R2
2R −R2)R2

2I + (a′ − R2
2R)

2 = 0.

Since R2
2I and R2

3I satisfy the same equation, assuming R2
2I ≥ R2

3I , we obtain

R2
2I =

−(R2
1R + 2R2

2R − R2) +
√

(R2
1R + 2R2

2R −R2)2 − 4(a′ − R2
2R)

2

2
,

(D·50)

R2
3I =

−(R2
1R + 2R2

2R − R2)−
√

(R2
1R + 2R2

2R − R2)2 − 4(a′ − R2
2R)

2

2
.

(D·51)

Thus, R2R = R3R, R2I , and R3I are determined by R1R. Since this solution is a one-

parameter family, it is a continuous solution. See Appendix F for the range of R1R that

is derived from the condition that R2
2I is real. Furthermore, when the correlation a is

zero, we obtain u1 = u2 = u3 = u4 and x1 = x2 = x3 = x4. From Eq. (D·47), we obtain

a′ = b′ = c′ = 0. Thus, we obtain R2R = R3R = 0 by Eq. (D·48). In this case, we obtain

R2I = 0 or R3I = 0 since c′ = R2IR3I becomes zero. Therefore, the number of nonzero

variables among Rµ is only two.

II-A-2. c23 6= 0.

From Eq. (D·42), we obtain c12 + c13 = 0. By Eqs. (D·23) and (D·24), we obtain

P1u1 = P2u3. From Eqs. (D·22) and (D·25),

c11 = 4P1u1 + 2P2(u2 + u4), (D·52)

c23 = 4P1u1 + 2P2(−u2 − u4). (D·53)

Since βJ(c11 + c23) = 1, we obtain 8P1u1βJ = 1. Thus, we have

u1 =
1

8βJP1

=
1

(1 + 3a)βJ
, (D·54)

u3 =
P1

P2

u1 =
1

(1− a)βJ
. (D·55)
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From these equations, x1 and x3 are uniquely determined. From Eq. (D·37), we have

(1− βJc11)R2I = βJc23R3I .

Since βJ(c11 + c23) = 1, we obtain

R2I = R3I 6= 0. (D·56)

From Eq. (D·37), we obtain c12 + c13 = 0. Thus, from Eq. (D·33), we obtain

R1R =
c12
c23

(R2R − R3R). (D·57)

From Eq. (D·34), we have

(1− βJc11)R2R = βJ(c12R1R + c23R3R).

By substituting Eq. (D·57) into Eq. (D·51), we obtain

(c223 − c212)(R3R − R2R) = 0.

If we assume (c223 − c212) 6= 0, we obtain R2R = R3R but R1R becomes zero from Eq.

(D·57). Thus, we have

c223 − c212 = 0.

We study the two cases of A-2-1 c12 = c23 and A-2-2 c12 = −c23 separately.

II-A-2-1. c12 = c23. Asymmetric mixed solution: A1

From Eqs. (D·56) and (D·57), we obtain

R2I = R3I . (D·58)

R1R = R2R − R3R. (D·59)

From Eqs. (D·23) and (D·25), we obtain u2 = u3, x2 = x3, and Ξ2 = Ξ3. From Eqs.

(D·27) and (D·28), a′ = c′ follows and we obtain

R1RR2R = R2RR3R +R2IR3I . (D·60)

From Eqs. (D·26)-(D·29),

Ξ2
1 = R2 + 4a′ + 2b′, (D·61)

Ξ2
2 = R2 − 2b′, (D·62)

Ξ2
4 = R2 − 4a′ + 2b′. (D·63)

By definition, we have

R2 = R2
1R +R2

2R +R2
2I +R2

3R +R2
3I . (D·64)
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As is shown below, from Eqs. (78), (D·59), (D·60), (D·61), (D·62), and (D·63), the five

variables are determined. Thus, this is not the CA. Equation (D·64) is expressed as

R2 = R2
1R +R2

2R + 2R2
2I + (R2R −R1R)

2

= 2R2
1R + 2R2

2R + 2R2
2I − 2a′. (D·65)

From b′ = R1RR3R and Eq. (D·59), we obtain

R2
1R = a′ − b′.

Thus, we obtain a′ > b′. From R2
1R = a′ − b′ and a′, we obtain

R2
2R =

a′2

R2
1R

=
a′2

a′ − b′
.

By substituting R3R into a′ = c′, we obtain

R2
2I = a′ − a′b′

a′ − b′
.

By substituting the above equations into Eq. (D·65), we obtain

R2 = 2(2a′ − b′). (D·66)

Then, from Eq. (D·61) we have

Ξ2
1 = R2 + 4a′ + 2b′ = 8a′, (D·67)

a′ =
1

8
Ξ2
1 > 0. (D·68)

Similarly, from Eqs. (D·62) and (D·63), we obtain

Ξ2
2 = R2 − 2b′ = 4(a′ − b′), (D·69)

Ξ2
4 = R2 − 4a′ + 2b′ = 0. (D·70)

Thus, x4 = 0. From Eqs. (D·67) and (D·69),

b′ =
1

8
(Ξ2

1 − 2Ξ2
2).

From Eq. (D·66),

R2 =
1

4
(Ξ2

1 + 2Ξ2
2). (D·71)

Since we derived a′ = c′ and b′, we obtain

R2
1R = a′ − b′ =

1

4
Ξ2
2, (D·72)

R2
2R =

a′2

a′ − b′
=

Ξ4
1

16Ξ2
2

, (D·73)
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R2
3R = (

b′

a′
)2R2

2R =
1

16Ξ2
2

(Ξ2
1 − 2Ξ2

2)
2, (D·74)

R2
2I = a′ − a′b′

a′ − b′
=

Ξ2
1

16Ξ2
2

(4Ξ2
2 − Ξ2

1) (D·75)

= R2
3I .

From a′ = R1RR2R and a′ = c′ = 1
8
Ξ2
1 > 0, we obtain R2R > 0. From R2

2I ≥ 0, we obtain

the following condition:

(2Ξ2 + Ξ1)(2Ξ2 − Ξ1) ≥ 0,

Ξ1 ≤ 2Ξ2.

From the definition of c′ and c′ = 1
8
Ξ2
1, we obtain

R2RR3R =
1

8
Ξ2
1 −R2

2I

=
Ξ2
1

16Ξ2
2

(Ξ1 +
√
2Ξ2)(Ξ1 −

√
2Ξ2).

From the condition Ξ1 ≤ 2Ξ2, we obtain R2RR3R ≤ 0. Thus, R3R ≤ 0. The critical

point is T
(A1)
c = (1−a)J

2
. The values of ul , RlR, RlI , and R are

u1 =
1

(1 + 3a)βJ
, u2 = u3 =

1

(1− a)βJ
, u4 =

1

2
, x4 = 0,

R1R =
1

2
Ξ2, R2R =

1

4

Ξ2
1

Ξ2

, R3R = − 1

4Ξ2

|Ξ2
1 − 2Ξ2

2|,

R2
2I =

Ξ2
1

16Ξ1
2

(4Ξ2
2 − Ξ2

1) = R2
3I , R2I = R3I , R =

1

2

√

Ξ2
1 + 2Ξ2

2.

II-A-2-2. c12 = −c23. Asymmetric mixed solution: A2

The asymmetric mixed solution A2 is obtained from the condition c23 = −c12. This

solution is derived from solution A1 by replacing µ = 3 with 2, l = 2 with 3, and l = 4

with 2.

II-B. βJ(c11 − c23) = 1.

By using βJ(c11 − c23) = 1, Eq. (D·41) becomes

c23(c12 − c13)
2 = 0. (D·76)

We study the two cases of B-1 c23 = 0 and B-2 c23 6= 0 separately.

II-B-1. c23 = 0. Continuous attractor: CA

From the conditions, the solution is the CA.

II-B-2. c23 6= 0.

From Eq. (D·76), we obtain c12 − c13 = 0. From Eqs. (D·23) and (D·24), we obtain
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u2 = u4. By using βJ(c11 − c23) = 1 and Eqs. (D·22) and (D·25), we obtain

u2 =
1

8βJP2
=

1

(1− a)βJ
= u4. (D·77)

From this, x2 = x4 is uniquely determined. From Eq. (D·37),

(1− βJc11)R2I = βJc23R3I . (D·78)

Since βJ(c11 − c23) = 1, we obtain R2I = −R3I 6= 0. From Eq. (D·33), we obtain

R1R = −c12
c23

(R2R +R3R). (D·79)

From Eq. (D·34),

(1− βJc11)R2R = βJ(c12R1R + c23R3R). (D·80)

By substituting Eq. (D·79) into Eq. (D·80), we obtain

(c223 − c212)(R2R +R3R) = 0.

If we assume (c223 − c212) 6= 0, we obtain R2R = −R3R but R1R becomes zero because of

Eq. (D·79). Thus, we have

c223 − c212 = 0.

We study the two cases of B-2-1 c12 = c23 and B-2-2 c12 = −c23 separately.

II-B-2-1. c12 = −c23. Asymmetric mixed solution: A3

Similarly to the case of II-A-2-1, we obtain

u1 =
1

(1 + 3a)βJ
, u2 = u4 =

1

(1− a)βJ
, u3 =

1

2
, x3 = 0, R =

√

Ξ2
1 + 2Ξ2

2

2
,

R1R =
1

2
Ξ1, R2R =

Ξ1

4
= R3R, R2

2I =
1

16
(4Ξ2

2 − Ξ2
1) = R2

3I , R2I = −R3I .

Thus, 2Ξ2 ≥ Ξ1 should hold. The critical point is T
(A3)
c = (1−a)J

2
.

II-B-2-2. c12 = c23. Symmetric mixed solution: S3

Similarly to the case of II-A-2-1, we obtain the following:

R2R = R3R , R2I = −R3I .

The critical temperature is T
(S3)
c = (1−a)J

2
. Since R1R > 0, R1R becomes 1

2
Ξ2. Since

a′ = R1RR2R, we obtain a′ = b′ = c′ < 0. Since R2R = R3R < 0, we obtain R2R = −Ξ2

4
.

Thus, we obtain

u1 =
1

2
, x1 = 0, u2 = u3 = u4 =

1

(1− a)βJ
,
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R =

√
3

2
Ξ2, R1R =

1

2
Ξ2, R2R = −Ξ2

4
= R3R, R2

2I =
3

16
Ξ2
2 = R2

3I , R2I = −R3I .

R1 = R2 = R3 holds. The critical point is T
(S3)
c = (1−a)J

2
.

III. (R2I , R3I) = (0, 0) Symmetric mixed solution: S4

Firstly, we assume R1R = R2R = R3R > 0. Thus, R1 = R1R = R2 = R3 follows. From

Eqs. (D·30)-(D·32), a′ = b′ = c′ = R2
1 follows. We assume R1R = R2R = R3R. We obtain

R2 = R2
1 +R2

2 +R2
3 = 3R2

1. (D·81)

From Eq. (D·26), we obtain x1 = 3βJR1. Thus, we have

R1 =
x1

3βJ
= R2 = R3, (D·82)

R =
x1√
3βJ

. (D·83)

From Eqs. (D·27)-(D·29), we obtain

x2 = x3 = x4 = βJR1 < x1 = 3βJR1.

Adding both sides of the SPEs. (D·33)-(D·35) and using Eqs. (D·22)-(D·25), we obtain

3 = βJ(18P1u1 + 2P2u2 + 2P2u3 + 2P2u4).

Because u2 = u3 = u4, we obtain

1

βJ
= 6P1u1 + 2P2u2.

From the relations x1 = 3x2 = 3x3 = 3x4, ul = u(xl), and R = x1√
3βJ

, the identity

R2 = 2
βJ

∑2p−1

l=1 Plulx
2
l becomes

1

βJ
=

3

4
(1 + 3a)u(x1) +

1

4
(1− a)u(

x1

3
). (D·84)

Therefore, x1 is determined by Eq. (D·84). Let us derive the critical point of the sym-

metric mixed solution S4 from Eq. (D·84). The function u(x) decreases monotonically

as x increases and takes a maximum value of 1
2
at x = 0. Substituting u(0) = 1

2
into

Eq. (D·84), we obtain the critical point T
(S4)
c = (1+2a)J

2
. From the definition of cµν , Eq.

(55) is derived. Thus, Eqs. (52)-(56) are derived.

Now, we show that the case that one or two of the RµR have the opposite sign does

not satisfy the SPEs. Let us consider the case that R1R = R2R = −R3R > 0. In this case,

a′ = −b′ = −c′ = R2
1. Thus, Ξ

2
1 = Ξ2

3 = Ξ2
4 = R2 − 2a′ = R2

1 and x1 = x3 = x4 = βJR1

follow. That is, u1 = u3 = u4 holds. From Eqs. (D·33) and (D·34), we obtain

1 = βJ(c11 + c12 − c13), (D·85)
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1 = βJ(c12 + c11 − c23). (D·86)

Thus, c12 = c23 follows. Substituting the definitions of c12 and c13 into this relation, we

obtain u3 = u4. From Eq. (D·35), we obtain

1 = βJ(c11 − 2c13). (D·87)

Thus, c12 = −c13 follows. From this, we obtain u1 =
P2

P1
u3. Since u1 = u3, this holds only

for a = 0. Finally, let us consider the case that R1R = −R2R = −R3R > 0. Similarly,

we obtain u1 = u2 = u4 and u1 =
P2

P1
u2. Thus, this holds only for a = 0.

Appendix E: Stability Analysis of Irrelevant Solutions for p ≤ 3

Now, we investigate the Hessian matrix at each unstable solution. Each component

of the Hessian matrix is given in Eqs. (61)-(63).

E.1 Case of p = 2

E.1.1 Symmetric mixed solution S2

For S2, we have

u1 =
1

2
, u2 =

1

(1− a)βJ
, R1R =

x1

2βJ
= −R2R , R2I = 0, R =

x1√
2βJ

.

Thus, the critical point is T
(S2)
c = (1−a)J

2
. The values of cµµ and cµν are

cµµ =
1

2βJ
+

1 + a

4
, cµν = − 1

2βJ
+

1 + a

4
, (µ 6= ν).

Now, we put γ̃ ≡ JN(1
2
− 1+a

4
βJ). Therefore, the Hessian matrix H is expressed as

H =















1R 2R 1I 2I

1R Ã −Ã 0 0

2R −Ã Ã 0 0

1I 0 0 γ̃ −γ̃

2I 0 0 −γ̃ γ̃















,

where Ã = γ̃ − 2JN(βJ)2X2R
2
1R. Its determinant is

|H − λE| = (2Ã− λ)(2γ̃ − λ)(−λ)2.

The eigenvalues of this matrix are

λ = 0 (2-fold) , 2Ã, 2γ̃.
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If γ̃ > 0, the solution is stable. The condition for this is T > (1+a)J
2

. However, the con-

dition for the existence of the solution S2 is T <T
(S2)
c = (1−a)J

2
. Therefore, the symmetric

mixed solution S2 is unstable.

E.2 Case of p = 3

E.2.1 Symmetric mixed solution S3

For S3, we have

u1 =
1

2
, x1 = 0, u2 = u3 = u4 =

1

(1− a)βJ
,

R =

√
3

2
Ξ2, R1R =

1

2
Ξ2, R2R = −Ξ2

4
= R3R, R2

2I =
3

16
Ξ2
2 = R2

3I , R2I = −R3I .

R1 = R2 = R3 holds. The critical point is T
(S3)
c = (1−a)J

2
. The values of cµµ and cµν are

cµµ =
3

4βJ
+

1− a

8
, cµν = − 1

4βJ
+

1− a

8
, (µ 6= ν).

We put γ̂ ≡ JN(1
4
− 1−a

8
βJ). Therefore, the Hessian matrix H is expressed as

Λ =

























1R 2R 3R 1I 2I 3I

1R 3Â− 2γ̂ −2Â+ 3γ̂ −2Â+ 3γ̂ 0 B̂ −B̂

2R −2Â + 3γ̂ 3Â− 2γ̂ Â B̂ 0 0

3R −2Â + 3γ̂ Â 3Â− 2γ̂ −B̂ 0 0

1I 0 B̂ −B̂ 3Â− 2γ̂ 0 0

2I B̂ 0 0 0 3Â− 2γ̂ −3Â+ 4γ̂

3I −B̂ 0 0 0 −3Â+ 4γ̂ 3Â− 2γ̂

























,

where Â = γ̂ − 1
8
JN(βJ)2X2Ξ

2
2 and B̂ = −1

2
JN(βJ)2ζ2Rζ2I . Because of the rotational

symmetry, R1I = 0 can be assumed. Then, we consider the 5× 5 matrix without the 1I

components. Its determinant is

|H − λE| = −(2γ̂ − λ)(4Â− 4γ̂ − 2λ)

∣

∣

∣

∣

∣

∣

∣

∣

3Â− 2γ̂ − λ −2Â + 3γ̂ 2B̂

−4Â + 6γ̂ 4Â− 2γ̂ − λ 0

B̂ 0 −6Â+ 6γ̂ + λ

∣

∣

∣

∣

∣

∣

∣

∣

.

Two of the six eigenvalues are 2γ̂ and 2(Â − γ̂). In order that S3 is stable, γ̂ > 0 is

necessary. The condition for this is T > (1−a)J
2

. However, the condition for the existence

of the solution S3 is T <T
(S3)
c = (1−a)J

2
. Therefore, the symmetric mixed solution S3 is

unstable.
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E.2.2 Asymmetric mixed solution A1

For A1, we have

u1 =
1

(1 + 3a)βJ
, u2 = u3 =

1

(1− a)βJ
, u4 =

1

2
, x4 = 0,

R1R =
1

2
Ξ2, R2R =

1

4

Ξ2
1

Ξ2
, R3R = − 1

4Ξ2
|Ξ2

1 − 2Ξ2
2|,

R2
2I =

Ξ2
1

16Ξ1
2

(4Ξ2
2 − Ξ2

1) = R2
3I , R2I = R3I , R =

1

2

√

Ξ2
1 + 2Ξ2

2.

Ξ1 ≤ 2Ξ2 should hold. The critical point is T
(A1)
c = (1−a)J

2
. The values of cµµ and cµν are

cµµ =
3

4βJ
+

1− a

8
, c12 =

1

4βJ
− 1− a

8
= c23 = −c13.

We put γ′ ≡ JN(1
4
− 1−a

8
βJ) and then the Hessian matrix H is expressed as

Λ =

























1R 2R 3R 1I 2I 3I

1R A′ A′ − 2γ′ B′ G′ G′ G′

2R A′ − 2γ′ A′ B′ − 2γ′ G′ G′ G′

3R B′ B′ − 2γ′ A′ G′ G′ G′

1I G′ G′ G′ C ′ D′ D′ + 2γ′

2I G′ G′ G′ D′ C ′ C ′ − 2γ′

3I G′ G′ G′ D′ + 2γ′ C ′ − 2γ′ C ′

























,

where A′ = γ − 1
4
JN(βJ)2{X1Ξ

2
2 + X2

Ξ4
1

4Ξ2
2
}, B′ = γ − 1

4
JN(βJ)2{X1Ξ

2
2 − X2

Ξ4
1

4Ξ2
2
},

C ′ = γ − JN(βJ)2R2
2I(X1 + X2), D′ = −γ − JN(βJ)2R2

2I(X1 − X2), and G′ =

−1
4
JN(βJ)2X1ζ1Rζ1I . Because of the rotational symmetry, R1I = 0 can be assumed.

Then, we consider the 5× 5 matrix without the 1I components. Its determinant is

|H − λE| = (2γ′ − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2γ′ − λ −4γ′ + 2λ λ 0

2A′ − 2γ′ − λ 0 −2A′ + 2B′ + λ 2G′

−2A′ + 2B′ + 2γ′ + λ −4γ′ 4A′ − 4B′ − λ 0

2G′ 0 0 2C ′ − 2γ′ − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, 2γ′ is one of the eigenvalues. In order that the solution is stable, γ′ > 0 should

hold. That is, T > (1−a)J
2

is necessary. However, the condition for the existence of

the solution A1 is T <T
(A1)
c = (1−a)J

2
. Therefore, the asymmetric mixed solution A1 is

unstable.
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E.2.3 Asymmetric mixed solution A3

For A3, we have

u1 =
1

(1 + 3a)βJ
, u2 = u4 =

1

(1− a)βJ
, u3 =

1

2
, x3 = 0, R =

√

Ξ2
1 + 2Ξ2

2

2
,

R1R =
1

2
Ξ1, R2R =

Ξ1

4
= R3R, R2

2I =
1

16
(4Ξ2

2 − Ξ2
1) = R2

3I , R2I = −R3I .

2Ξ2 ≥ Ξ1 should hold. The critical point is T
(A3)
c = (1−a)J

2
.

The values of cµµ and cµν are

cµµ =
3

4βJ
+

1− a

8
, c12 =

1

4βJ
− 1− a

8
= c13 = −c23.

Defining γ∗ ≡ JN(1
4
− 1−a

8
βJ), the Hessian matrix H is expressed as

Λ =

























1R 2R 3R 1I 2I 3I

1R A∗ A∗ − 2γ∗ −A∗ − ω∗ C∗ C∗ −C∗

2R A∗ − 2γ∗ A∗ −A∗ − ω∗ + 2γ∗ C∗ C∗ −C∗

3R −A∗ − ω∗ −A∗ − ω∗ + 2γ∗ A∗ −C∗ −C∗ C∗

1I C∗ C∗ −C∗ B∗ B∗ − 2γ∗ −B∗

2I C∗ C∗ −C∗ B∗ − 2γ∗ B∗ −B∗ + 2γ∗

3I −C∗ −C∗ C∗ −B∗ −B∗ + 2γ∗ B∗

























,

where A∗ = γ∗ − 1
4
JN(βJ)2Ξ2

1(X1 + 1
4
X2), B∗ = γ∗ − JN(βJ)2X2R

2
2I , C∗ =

−1
4
JN(βJ)2X2ζ2Rζ2I , and ω∗ = 1

2
JN(βJ)2X1Ξ

2
1. Because of the rotational symme-

try, R1I = 0 can be assumed. Then, we consider the 5 × 5 matrix without the 1I

components. Its determinant is

|H − λE| = −(2γ∗ − λ)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2A∗ − 2γ∗ − λ −ω∗ − λ 2C∗

−2 0 λ 0

−1 −4A∗ − 2ω∗ + 2γ∗ + λ 0 −4C∗

0 2C∗ 0 2B∗ − 2γ∗ − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, 2γ∗ is one of the eigenvalues. In order that the solution is stable, γ∗ > 0 should

hold. That is, T > (1−a)J
2

is necessary. However, the condition for the existence of

the solution A3 is T <T
(A3)
c = (1−a)J

2
. Therefore, the asymmetric mixed solution A3 is

unstable.
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Appendix F: Range of R1R and Relations R1R, R2R, and R3R for the CA

when p = 3

In the CA studied in Appendix D, there are the following relations with R1R > 0:

R1I = 0 , R2R = R3R =
a′

R1R
> 0,

a′ =
x2
1 − x2

2

8(βJ)2
, R2 =

x2
1 + 3x2

2

4(βJ)2
,

a′ = b′ = c′ = R2
2R +R2IR3I .

From these, we obtain (R2IR3I)
2 = (R2R − a′)2 and R2

2I + R2
3I = R2 − R2

1R − 2R2
2R.

Thus, t = R2R or R3R satisfies

t2 + (R2
1R + 2R2

2R − R2)t+ (a′ − R2
2R)

2 = 0. (F·1)

We put b̃ = R2
1R + 2R2

2R −R2 and c̃ = (a′ −R2
2R)

2. Then, the solutions of Eq. (F·1) are

t =
−b̃±

√

b̃2 − 4c̃

2
.

Since both R2
2I and R2

3I satisfy Eq. (F·1), we assume R2
2I ≥ R2

3I and we have

R2
2I =

−b̃+
√

b̃2 − 4c̃

2
,

R2
3I =

−b̃−
√

b̃2 − 4c̃

2
.

We find that c̃ = (a′−R2
2R)

2 ≥ 0. Since R2
2I andR2

3I are real and non-negative, b̃2−4c̃ ≥ 0

and b̃ ≤ 0 should be satisfied. Firstly, we study the range of R1R in which the following

relation holds:

b̃2 − 4c̃ = R4
1R +R4 + 4R2

1RR
2
2R − 4R2

2RR
2 − 2R2

1RR
2 − 4a′2 + 8a′R2

2R ≥ 0.(F·2)

Now, we put y = R2
1R. From the relation R2R = a′

R1R
, Eq. (F·2) reduces to

f(y) ≡ y3 − 2R2y2 +R4y + 8a′3 − 4a′2R2 ≥ 0. (F·3)

By substituting R2 =
Ξ2
1+3Ξ2

2

4
and a′ =

Ξ2
1−Ξ2

2

8
into Eq. (F·3), we obtain

f(y) = (y − Ξ2
2){y −

1

4
(Ξ1 + Ξ2)

2}{y − 1

4
(Ξ1 − Ξ2)

2} ≥ 0. (F·4)

Therefore, the three solutions of f(y) = 0 are

y = Ξ2
2,

1

4
(Ξ1 + Ξ2)

2,
1

4
(Ξ1 − Ξ2)

2.

Next, we investigate the extreme values of this expression. The derivative of f(y) is

f ′(y) = 3y2 −Ay +
1

16
A2 = 3(y − 1

4
A)(y − 1

12
A), (F·5)
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where A = Ξ2
1 + 3Ξ2

2. Thus, the extreme values are attained at y = 1
4
A and 1

12
A. Note

that R2 = 1
4
A. At y = A

4
, f takes the following value:

f = − 1

16
(Ξ1 − Ξ2)

2Ξ2
2,

and at y = A
12
, it takes the value

f =
1

432
(Ξ1 + 3Ξ2)

3 − 1

16
(Ξ1 − Ξ2)

2Ξ2
2.

We investigate the magnitude relation of the three solutions. From Ξ1 > Ξ2 > 0, we

obtain Ξ1+Ξ2

2
> Ξ2 and Ξ1+Ξ2

2
> Ξ1−Ξ2

2
> 0. Therefore, the shape of the graph of f is as

shown in Fig. F·1. Thus, the range of R1R where f ≥ 0 is satisfied is the following.

Fig. F·1. Function f .

(i) When Ξ1 > 3Ξ2, Ξ2 ≤ R1R ≤ 1
2
(Ξ1 − Ξ2) .

(ii) When Ξ1 < 3Ξ2,
1
2
(Ξ1 − Ξ2) ≤ R1R ≤ Ξ2 .

Now, let us study the region in which b̃ ≤ 0 holds. We define the function g(y) as

g(y) = R2
1Rb̃ = y2 − R2y + 2a′2

= y2 − 1

4
(Ξ2

1 + 3Ξ2
2)y +

1

32
(Ξ2

1 − Ξ2
2)

2.

We estimate g(y) at y = Ξ2
2 and 1

4
(Ξ1 − Ξ2)

2.

g(Ξ2
2) =

1

32
(Ξ2

1 − Ξ2
2)(Ξ

2
1 − 9Ξ2

2),

g(
1

4
(Ξ1 − Ξ2)

2) =
1

32
(Ξ1 − Ξ2)

2(Ξ1 − 3Ξ2)(Ξ1 + Ξ2).

Thus, the necessary and sufficient condition for b̃ ≤ 0 is Ξ1 ≤ 3Ξ2. Therefore, case (ii)

should hold. Next, let us study the magnitude relation of R1R, R2R, and R3R. The range
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of R1R where the CA appears is

R− ≤ R1R ≤ R+, (F·6)

where R− = Ξ1−Ξ2

2
and R+ = Ξ2. We compare the magnitude relation between R1R and

R2R,

R1R −R2R =
1

R1R

(

R2
1R − Ξ2

1 − Ξ2
2

8

)

.

Since Ξ1 ≤ 3Ξ2, R1R takes the minimum value 1
2
(Ξ1 − Ξ2). Thus, we obtain

(

R2
1R − Ξ2

1 − Ξ2
2

8

)

min
=

1

8
(Ξ1 − Ξ2)(Ξ1 − 3Ξ2) ≤ 0.

Therefore, we obtain R1R ≤ R2R. On the other hand, when R1R takes the maximum

value Ξ2,

(

R2
1R − Ξ2

1 − Ξ2
2

8

)

max
=

1

8
(3Ξ2 + Ξ1)(3Ξ2 − Ξ1) ≥ 0.

Thus, we obtain R1R ≥ R2R. When Ξ1 = 3Ξ2, then R1R = R2R = R3R = Ξ2, b̃ = c̃ = 0,

and R1I = R2I = R3I = 0 follow. That is, the CA degenerates into the symmetric mixed

solution S4.

From the above results, it is proved that there is a situation with R1R = R2R = R3R

as long as the CA exists, since the magnitude relation between R1R and R2R changes

in the range of R1R.
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