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ABSTRACT

The clone of the ciliated protozoan Paramecium caudatum has the immaturity

period of about 60 fissions and the lifespan of about 600 fissions. These life cycle

figures have been depicted through laboratory experiments that allow continuous

cell divisions for hundreds, which never occur in nature. We here constructed the

nature-mimicking model culture that alternated the log- and stationary phases to

allow conjugation, and computer-simulated the age structure modifying parameters

such as cell distributions to start the culture, fission rates, death rates, immaturity

periods, probabilities of conjugation, proportions of transplantation and so on. The

average and maximum ages in the culture after thousands of alternations were

converged to 43 ± 2 and 140 ± 5 fissions, respectively, when parameters for the

immaturity period and the maximum clonal lifespan were set at 60 and 600 fissions.

This result explains why cells collected in nature are usually young and vigorous.

The average and maximum ages proportionally prolonged as the immaturity period

was prolonged, as reported true for species of the ciliate. These results indicate the

validity of our simulation. The average and maximum ages remained unchanged

when the initial condition for starting the culture was changed from two

complementary mating-type cells to a population with a quadratic-function
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distribution, and when the fission rate at the log-phase and the death rate at the

stationary phase were modified for older ages. The average and maximum ages

changed slightly when either the conjugation rate or the proportion of

transplantation was somewhat lowered. Although they changed considerably when

such parameters as the immaturity period, conjugation rate and death rate were

extremely modified, no clones with the age over 230 fissions appeared in any

simulations. These results indicate the robustness of the model, which provides us

with fresh insight into the structural system of the clonal lifespan of P. caudatum

in nature.
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1. Introduction

The ciliated protozoa, to which Paramecium belongs, are unique unicellular

organisms in that the sexual progeny have the definite division potential or the clonal

lifespan similar to that of normal diploid human cells cultured in vitro. The process

of asexual reproduction following the sexual reproduction such as conjugation or

autogamy is composed of immaturity, maturity and senility: the immaturity period

lasts for about 60 fissions, and the clonal lifespan for about 600 fissions in

P. caudatum; the autogamy-immaturity period lasts for about 20 fissions, and the

clonal lifespan for about 300 fissions in P. tetraurelia. Conjugation or autogamy

resets the clonal life to time zero to initiate the new life cycle from immaturity or

autogamy-immaturity. The length of each life cycle stage is counted by the

number of fissions, rather than by the physical time (Takagi, 1988). Paramecium

that has long been a model organism for cellular aging and clonal lifespan

(Sonneborn, 1954, 1974; Smith-Sonneborn, 1981, 1985; Takagi, 1988, 1999) proposes

fascinating questions such as whether the maximal lifespan could be extended

indefinitely or not, what would happen if the immaturity period was drastically

2



shortened or elongated, whether the relationship might exist between the

immaturity period and the lifespan, and so forth. These questions have been partly

answered by mutant studies. Although the lengths of clonal lifespan (Takagi et al.,

1987a) and autogamy-immaturity (Komori et al., 2002) are very variable, the

isolation of mutants that have shorter immaturity period in P. caudatum (Myohara

& Hiwatashi, 1978), those that have shorter clonal lifespan in P. tetraurelia

(Takagi et al., 1987b), and those that have longer period of autogamy-immaturity

in P. tetraurelia (Komori et al., 2004, 2005) indicates that the life cycle stages in

Paramecium are genetically regulated. Although it has been reported in

mammals (Cutler, 1978) and in ciliates (Smith-Sonneborn, 1981) that the lifespan

is directly proportional to the age at sexual maturation, mutants with longer period

of autogamy-immaturity were not related to the clonal lifespan (Komori et al., 2004,

2005), suggesting that the interspecies rule between the lifespan and the immaturity

period should not be applied to the intraspecies relation (Komori et al., 2005).

Almost all of the findings on the life cycle of Paramecium are based on the

laboratory experiments conducted under conditions that never occur in nature. It

would be impossible for a Paramecium cell with the size of 10−8 cm3 to divide

continuously in nature for even 117 times, because the total volume of 2117(' 1.3×

1035) cells would exceed the earth volume (1.08 × 1027 cm3). Since the

continuous presence of food is necessary for continuous fissions, and since the

moderate starvation is a condition to induce the sexual reproduction, the regular

transfer of a part of the fission products into new culture medium, usually the daily

transfer of one of the fission products called the daily isolation culture, is essential

for the life cycle studies in Paramecium. Since the daily isolation culture is possible

only in laboratory, the life cycle of Paramecium in nature has remained unrevealed.

To estimate the life features of Paramecium in nature, we here set a model

culture of P. caudatum that alternates the log-phase and the stationary phase to

allow conjugation, and computer-simulated the age structure of the model culture.

We first adopted probable numerical values for the parameters such as the cell

number at the start of the culture, the fission and death rates at the log-phase, the
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conjugation rate at the stationary phase after a certain length of immaturity period,

and the cell numbers at each transfer to a new flask; we then computer-simulated

the age structure of the serially transferred populations by modifying these

parameters one by one. This is an unprecedented research demonstrating that the

length of immaturity and the rate of conjugation in maturity have critical effects

on the population profile and why Paramecium cells collected in nature are usually

young and vigorous.

2. Formulation

2.1. Model

The model cells of P. caudatum are grown in a flask containing 1,000 ml culture

medium that can accommodate Nmax cells, starting from an initial population for

two complementary mating-type (equivalent to a male and a female) cells, m and

f, at age 0. The period during which they grow exponentially is referred to as the

phase 1, and the period during which they stop dividing, or they are at the stationary

phase, is referred to as the phase 2, in which maturated cells can conjugate. We

assume that cells are in the phase 2 for some period τ . Then, y% of populations are

chosen randomly and transplanted into a new flask which contains the same volume

of culture medium as in the old flask. We repeat this procedure.

Now, we explain notations. The number of fissions (cell divisions) is represented

by a, the clonal lifespan by A(s) (s = m or f), and a pair of m and f at their ages

a and a′ by (a, a′). We define the unit time interval ∆t = 1 as the period of 1

fission at the phase 1. The number of clones of the age a and the sex s at time t is

represented by N
(s)
t (a), and the total number of clones of the sex s at time t is by

N
(s)
t =

∑A(s)

a=0 N
(s)
t (a).

In this paper, we consider the average number of cells. So, we introduce several

probabilities in each phase. In the phase 1, probabilities of death, fission, and

neither death nor fission for each clone during the time interval ∆t = 1 are denoted
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by p
(s)
d (a), p

(s)
b (a) and p

(s)
nbd(a), respectively. These satisfy the following relation,

p
(s)
b (a) + p

(s)
d (a) + p

(s)
nbd(a) = 1. (1)

During the phase 2, the probabilities of death and non-death are denoted by p̃
(s)
d (a)

and p
(s)
nd(a), respectively. These satisfy the following relation,

p̃
(s)
d (a) + p

(s)
nd(a) = 1. (2)

These probabilities are supposed to be dependent on age a, having no relation to

time t. The probability of non-death is the sum of the probability of conjugation

p(s)
c (a, t) and that of non-conjugation p(s)

nc (a, t),

p
(s)
nd(a) = p(s)

c (a, t) + p(s)
nc (a, t). (3)

2.2. Probabilities of clones that conjugate

In this subsection, we calculate the probabilities of clones that conjugate.

Suppose that the phase 2 starts at time t. Then, the number of clones of the age a

and the sex s that survive at the end of the phase 2 is

M
(s)
t (a) = p

(s)
nd(a)N

(s)
t (a). (4)

The total number of clones of the sex s at the end of the phase 2 is M
(s)
t =∑A(s)

a=0 M
(s)
t (a). Then, the maximum number of pairs of male and female at the

end of the phase 2 is

Mp,t = min{M (m)
t ,M

(f)
t }. (5)

Now, let us assume that the probability at which a pair of clones (a, a′) conjugate

during the phase 2 depends on (a, a′). We denote it by qc(a, a′). When a pair of

male and female are chosen in the phase 2 at random, the probability p2(a, a′) that

their ages are (a, a′) is estimated as

p2(a, a′) =
M

(m)
t (a)

M
(m)
t

M
(f)
t (a′)

M
(f)
t

. (6)

Therefore, the probability pc(a, a′) that a pair with ages (a, a′) conjugate is

pc(a, a′) = qc(a, a′)p2(a, a′). (7)
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Thus, the number of conjugating pairs in which the age of male clones is a is

Mp,t

A(f)∑
a′=0

pc(a, a′) = Mp,t
M

(m)
t (a)

M
(m)
t M

(f)
t

A(f)∑
a′=0

M
(f)
t (a′)qc(a, a′). (8)

Expressing this as p(m)
c (a, t)Nt(a)(m), we obtain

p(m)
c (a, t) = p

(m)
nd (a)

Mp,t

M
(m)
t M

(f)
t

A(f)∑
a′=0

M
(f)
t (a′)qc(a, a′). (9)

Similarly, we obtain p(f)
c (a, t) as

p(f)
c (a, t) = p

(f)
nd(a)

Mp,t

M
(m)
t M

(f)
t

A(m)∑
a′=0

M
(m)
t (a′)qc(a

′, a). (10)

These are the probabilities for clones to conjugate during the phase 2.

2.3. Evolution equation for N
(s)
a,t in the phase 1

First, let us consider the number of clones of the age a and the sex s at time t+1

for a ≥ 1. During the time interval ∆t = 1, a clone of the age a − 1 and the sex s

at time t duplicates into two clones of the age a and the sex s with the probability

p
(s)
b (a − 1), and a clone of the age a and the sex s survives with the probability

p
(s)
nbd(a). Thus, the number of clones of the age a and the sex s at time t + 1, N

(s)
a,t+1,

is given by

N
(s)
t+1(a) = p

(s)
nbd(a, t)N

(s)
t (a) + 2p

(s)
b (a − 1)N

(s)
t (a − 1) (a ≥ 1). (11)

Since no clones become age 0 by duplication, the number of clones of the age a = 0

and the sex s at time t + 1 is given by

N
(s)
t+1(0) = p

(s)
nbd(0)N

(s)
t (0). (12)

2.4. Evolution equation for N
(s)
t (a) in the phase 2

Let us assume that the phase 2 starts at time t. The number of the clones of the

age a (≥ 1) and the sex s at the end of the phase 2 is that of the clones of the age a

and the sex s which survive and do not conjugate during the phase 2, and is given

by

N
(s)
t+τ (a) = p(s)

nc (a, t)N
(s)
t (a) (a ≥ 1). (13)

6



The number of the clones of the age a = 0 is the summation of that of the clones

of the age 0 which survive and do not conjugate and that of the clones produced

by conjugation during the phase 2. The former is p(s)
nc (0, t)N

(s)
t (0). The latter is

calculated as follows. The number of conjugating pairs at age (a, a′) is pc(a, a′)Mp,t.

Thus, the total number of conjugating pairs Nc,t is

Nc,t =
A(m)∑
a=0

A(f)∑
a′=0

pc(a, a′)Mp,t

=
Mp,t

M
(m)
t M

(f)
t

A(m)∑
a=0

A(f)∑
a′=0

M
(m)
t (a)M

(f)
t (a′)qc(a, a′). (14)

Thus, we obtain the evolution equation for N
(s)
t (0) as

N
(s)
t+τ (0) = p(s)

nc (0)N
(s)
t (0) + Nc,t

= p(s)
nc (0)N

(s)
t (0)

+
Mp,t

M
(m)
t M

(f)
t

A(m)∑
a=0

A(f)∑
a′=0

M
(m)
t (a)M

(f)
t (a′)qc(a, a′). (15)

3. Method

In this section, we describe the method of numerical simulations of evolution

equations (11), (12) , (13) and (15). Assuming the age dependences of the

probabilities p
(s)
b (a), p

(s)
d (a) in the phase 1 and p̃

(s)
d (a), qc(a, a′) in the phase 2,

the probabilities p
(s)
nbd(a), p

(s)
nd(a), p(s)

c (a, t) and p(s)
nc (a, t) can be calculated by using

eqs. (1), (2), (3), (9), (10) and N
(s)
a,t . Thus, giving an initial condition N

(s)
0 (a) for

a = 0, 1, · · · , A(s), we can obtain the time evolution of N
(s)
t (a) by (11), (12), (13)

and (15). In the numerical simulations, if N
(s)
t (a) < 1, N

(s)
t (a) is set to 0.

Here, we explain our choices of system parameters. First of all, we assume

that all parameters have the same values for males and females in almost all cases.

Thus, hereafter we omit the superscript (s) for all parameters except as otherwise

mentioned. The capacity of a flask Nmax and the period τ of the phase 2 are set to

106 and 16, respectively. These are realistic values based on laboratory experiments.

Since we performed simulations by changing initial conditions and several system

parameters, we list their values used in this paper.
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A. Initial distribution of population

A-1: delta distribution, consisting of two complementary mating-type cells.

A-2: quadratic distribution for male and female.

A-3: mixed distribution, consisting of the quadratic distribution for male and

the delta distribution for female.

B. Immaturity period aimm

B-1: 60 fissions, B-2: 30 fissions, B-3: 120 fissions,

B-4: 200 fissions, B-5: Every age from 30 fissions to 200 fissions.

C. Interval of maximum conjugation probability aint

C-1: 140 fissions, C-2: 100 fissions, C-3: 40 fissions.

D. Maximum of conjugation probability c(a), cmax

D-1: 0.7, D-2: 0.4 D-3: 0.1.

E. Ratio y of transplantation from the phase 2 to the phase 1

E-1: y = 1[%], E-2: y = 0.1[%].

F. Fission probability, pb(a)

F-1 : linear decrease from 0.9 at age 0 to 0.6 at age 400, and then to 0 at age

600 fissions.

F-2 : ditto except during the period from age 400 to 600 fission, in which 0.6

is kept unchanged.

F-3 : smaller pb(a) than that in F-1; linear decrease from 0.6 at age 0 to 0.3

at age 400, then to 0 at age 600 fissions.

G. Death probability, pd(a), p̃d(a)

G-1 : pd(a); 0.01 until age 200 fissions, then linear increase to 0.2 at age 400

and then to 1 at age 600 fissions,

p̃d(a); 0.01 until age 200 fissions, then linear increase to 0.3 at age 400

and then to 1 at age 600 fissions.
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G-2 : pd(a) = p̃d(a); 0.01 throughout the lifetime.

G-3 : larger pd(a) and p̃d(a) than those in G-1.

pd(a); 0.09 until age 200 fissions, then linear increase to 0.3 at age 400

and then to 1 at age 600 fissions,

p̃d(a); 0.2 until age 200 fissions, then linear increase to 1 at age 600

fissions.

G-4 : larger pd(a) and p̃d(a) than those in G-3.

pd(a); linear decrease from 0.3 at age 0 to 0.2 at age 200, and 0.2 until

age 400, then linear increase to 1 at age 600 fissions,

p̃d(a); linear decrease from 0.7 at age 0 to 0.5 at age 200, and 0.5 until

age 400, then linear increase to 1 at age 600 fissions.

The default parameter set is A-1, B-1, C-1, D-1, E-1, F-1 and G-1. In the below,

we explain the default parameters in detail.

Initial distribution, A-1: Delta distribution

As an initial distribution, we take a pair of male and female.

N
(m)
0 (a) = δ0,a, (16)

N
(f)
0 (a) = N

(m)
0 (a), (17)

where δ0,a is the Kronecker‘s delta, which is 1 for a = 0 and 0 otherwise. We call

this the delta distribution.

Parameters concerning conjugation probability, B-1, C-1, D-1

It is plausible to consider that the probability that a pair of clones ( a, a′) meet

is mainly determined by the more mobile clone. Thus, we assume that qc(a, a′)

depends only on the age of the younger clone. Further, we assume that a male and

a female can conjugate only when their ages are in a definite range, aimm < a < aold.

That is, the period 0 ≤ a ≤ aimm is the immature period during which clones can

not conjugate, and the period aold ≤ a ≤ A is the old period during which clones

are considered too senile to conjugate. Concretely, qc(a, a′) is assumed as follows.

qc(a, a′) =

{
c(a) ( a ≤ a′)
c(a′) ( a > a′)

(18)
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We adopt a piecewise linear function for c(a) as follows.

c(a) =


0 ( 0 ≤ a ≤ aimm)
cmax ( aimm < a ≤ aimm + aint)
cmax + cmax

200
(aimm + aint − a) ( aimm + aint < a ≤ aimm + aint + 200)

0 ( aimm + aint + 200 < a ≤ 600).

Here, aint is the interval during which c(a) is maximum, and aold = aimm +aint +200.

We set the default values as aimm = 60, aint = 140 and cmax = 0.7. See Fig. 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

a

c(a)

Figure 1: Age dependence of c(a).

Ratio y of transplantation from the phase 2 to the phase 1, E-1

y = 1[%] is plausible value for laboratory experiments.

Fission and death probabilities, F-1, G-1

Here, we assume that pb(a) is a non-decreasing function and pd(a) and p̃d(a) are

non-increasing functions with respect to a. For simplicity, we adopt the piecewise

linear functions.

4. Results

Table 1 shows the simulation results, i.e., the converged values, for the average

age aav and the maximum age amax.

Table 1. Simulation results for the average age aav and the maximum age amax.

The top column shows the results for the default parameter set, and the others show

the results when one of the parameters is changed from the default.
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Parameters aav amax

Default, A-1, B-1, C-1, D-1, E-1, F-1, G-1 43 ± 2 140 ± 5
A-2: Delta distribution → Quadratic distribution 43 ± 2 140 ± 5
B-2: aimm = 60 → aimm = 30 26 ± 3 106 ± 5
B-3: aimm = 60 → aimm = 120 80 ± 30 165 ± 45
B-4: aimm = 60 → aimm = 200 110 ± 50 170 ± 50
C-2: aint = 140 → aint = 100 43 ± 2 140 ± 5
C-3: aint = 140 → aint = 40 43 ± 2 140 ± 5
D-2: cmax = 0.7 → cmax = 0.4 48 ± 2 152 ± 5
D-3: cmax = 0.7 → cmax = 0.1 65 ± 2 188 ± 5
E-2: y = 1% → y = 0.1% 45 ± 5 117 ± 8
F-2: pb = 0.6 to 0 for a ∈ (400, 600) → pb = 0.6 for a ∈ (400, 600) 43 ± 2 140 ± 5
G-2: pd, p̃d = 0.01 for a ∈ (0, 200) → pd, p̃d = 0.01 for a ∈ (0, 600) 43 ± 2 140 ± 5
G-3: larger pd and p̃d than those of G-1 46 ± 4 144 ± 5
F-3 and G-4: smaller pb than that of F-1 52 ± 6 167 ± 13

and larger pd and p̃d than those of G-3

In the following subsections (4.1-4.5), we describe the simulation results for aav

and amax when one of the parameters is changed from the default value except as

otherwise mentioned.

4.1. Initial condition dependence

First, we compare the delta distribution A-1 with the following quadratic

distribution A-2 for males and females,

N
(m)
0 (a) = 200

a

300

(
600 − a

300

)
, (19)

N
(f)
0 (a) = N

(m)
0 (a). (20)

Since all parameters and initial distributions of population are same for males and

females, populations of male and female cells are equal at any time.

Fig. 2 shows how aav and amax are converged irrespective of initial conditions.

For the delta distribution, A-1, amax initially increases as time passes and reaches

the max value 160 at t = 490, when aav is 37.6. Just after this, the transplantation

takes place and at t = 506, amax becomes 102, when aav is 35.7. The reason for these

is considered as follows. After conjugation, only 1 % of populations are transplanted

and if Nt(a) is less than 1, it is set to 0. By this procedure, clones of higher ages
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 0  500  1000  1500  2000
t
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aav

Figure 2: Time series of average age aav and maximum age amax for males.
Solid curve: delta distribution (A-1), dashed curve: quadratic distribution (A-2),
dashed-dotted curve: mixed distribution (A-3).

are removed and the maximum age becomes lower. Since the number of removed

population is small, the average age changes only a little. We note that as time

passes, the fluctuations of amax and aav, denoted by ∆amax and ∆aav respectively,

become smaller and finally become constant values of approximately 5 and 2. On

the other hand, behaviors of amax and aav for the quadratic distributions, A-2, are

different from those for the delta distribution until about t = 600. Later, however,

amax and aav behave similarly to those for the delta distribution.

These results are obtained under the condition that initial distributions for males

and females are the same. In order to study the effect of different initial distributions

between males and females, we performed numerical simulations with the quadratic

distribution (eq.(19)) for males, and the following delta distribution for females,

N
(f)
0 (a) = n0δ0,a. (21)

We call this the mixed distribution, A-3. We studied the system behaviors for A-3

and found that clones die in a finite time for n0 ≤ 5, whereas similar behaviors as
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before are observed for n0 > 5. We performed numerical simulations for n0 = 10

and found that both amax and aav for males and females coincide until t = 1000.

In Fig. 2, amax and aav for males are displayed for A-3 together with for A-1 and

A-2. As time passes, behaviors of amax and aav become similar for these three cases,

although their initial behaviors are different.

One of the remarkable features of the system is that the values of the average

and maximum ages are very small: aav = 43 ± 2 and amax = 140 ± 5, respectively.

This implies that most cells are immature, and the maximum age is far below the

clonal lifespan A = 600 revealed in the laboratory.

Next, in order to study what determines aav and amax, we performed numerical

simulations by changing the system parameters, B-G.

4.2 aimm and aint dependence

We studied the dependence of amax and aav on the immature period aimm and the

interval aint during which the conjugation probability c(a) remains to be maximum.

aimm is set to 30, 60 and 120, and aint is set to 40, 100 and 140. Numerical simulations

were performed for all combinations of aimm and aint with other parameters fixed to

the default values. We found that the behavior of the system depends on aimm but

not on aint.

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0  2000  4000  6000  8000  10000  12000  14000

t

amax

aav

a

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2000  4000  6000  8000  10000  12000  14000

amax

aav

a

In Fig. 3, we show the time series of amax and aav for three values of aimm. We

note that the larger aimm is, the larger both aav and amax are. Further, fluctuations

for aav and amax are similar and small for aimm = 30 and 60, whereas they become
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(c)
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Figure 3: Time series of the maximum age amax and the average age aav.
Solid curve: amax, dashed curve: aav. aint is fixed to 140.
(a) aimm = 30, (b) aimm = 60, (c) aimm = 120.

quite large for aimm = 120. Since ages of clones become 0 when conjugation takes

place, the former result is explicit because of the frequent occurrence of conjugation.

The reason for the latter result is considered as follows. For aimm = 120, a gap

is observed in Nt(a) at the beginning of the phase 1. As time passes, the older

generation group disappears at some time, then the maximum age discontinuously

decreases. This causes large fluctuations in aav and amax. On the other hand, no

such a gap is observed for aimm = 30 and 60. Thus, the period of the oscillation

of aav and amax for aimm = 30 and 60 is different from that for aimm = 120. The

former is approximately 23 which is the period of the transplantation but the latter

is approximately 43 which is the time interval for the cells with the age amax−∆amax

to become the age amax + ∆amax. ∆amax is not independent of aimm but the period

of the oscillation and ∆amax are determined simultaneously.

In order to study the immature period dependences of aav and amax in more

detail, we calculated them by increasing aimm from 30 to 200 with the increment

1. As shown in Fig. 4, aav is approximately proportional to aimm, whereas amax

saturates and becomes approximately 170 at about aimm = 110. The standard

deviations for aav and amax become gradually larger as aimm increases.

The reason why amax saturates is related to the behaviors of death probabilities

pd(a) and p̃d(a). They are set constant until a = 200 but increasing for a > 200(≡
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Figure 4: Immature period dependence of aav and amax. Average over
3,000 iterations which correspond to 2,000 fissions, and the initial 2,000 iterations
are not included in the simulations of the average and standard deviation. Vertical
lines denote standard deviations. Solid curve: aav, dashed curve: amax. aint is fixed
to 140.

ad). Thus, If amax + ∆amax exceeds ad, the number of oldest cells decreases more

rapidly and by the transplantation procedure, the number of these cells is set to 0

if it is less than 1. Let aimm, s be the immature period where amax saturates. It is

estimated from the following relation,

amax + ∆amax = ad. (22)

From Fig. 4, we obtain aimm, s ' 120, which is consistent with the value 110

estimated above.

4.3. Maximum conjugation probability dependence

We found that aav and amax become larger as cmax is smaller (Table 1: D-2 and

D-3). This is reasonable because if conjugation takes place less frequently, mature

cells which do not conjugate increase so that the age 0 cells decrease.
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4.4 Transplantation ratio dependence

We found that the smaller the transplantation ratio (y) is, the longer the average

age and the shorter the maximum age are, respectively. (Table 1: E-2). The reasons

for these are considered as follows. If y is smaller, older cells are removed more,

because we set Nt(a) = 0 if Nt(a) < 1. This causes smaller amax by the reduction

of y. On the other hand, Nt(a) oscillates as the function of a with t fixed. In

particular, for a smaller than aav, there are ages of Nt(a) = 0. Thus, cells of

younger ages also removed more. Therefore, there are two factors by the reduction

of y, one is increasing aav, and the other is decreasing aav. As a whole for the present

parameter, aav increases only a little.

4.5. Fission and death probabilities dependence

In F-2, pb(a) is kept 0.6 for a ∈ (400, 600) and in G-2, pd(a) and p̃d(a) are kept

0.01 throughout the lifetime. We found that aav and amax for F-2 or for G-2 with

other parameters fixed to the default values are the same as those for the default

parameter set. This is because the probabilities during the interval (200 ∼ 600) are

not relevant since amax is at most 150.

Next, we consider very severe circumstances by assuming high death probabilities

that might occur in some natural circumstances. We increased death probabilities

pd(a) and p̃d(a) for a ≤ 200 9 times and 20 times larger respectively than each of

the default values. This is G-3. The simulation result shows that both aav and amax

are slightly larger values than those for the default parameters. Finally, we change

not only death probabilities but also the fission probability. The fission probability

is decreased from the default value. This is F-3. We assume that death probabilities

pd(a) and p̃d(a) are monotonically decreasing functions for a ≤ 200 with larger values

than those in G-3. This is G-4. We performed simulations with doubly modified

parameters of F-3 and G-4, in which the circumstance is severer than in G-3. The

result shows a considerably larger aav and amax than those for G-3. The reason for

these are considered as follows. The larger the death probability in the phase 1 is,
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the more time it takes for the number of cells to saturate. As a result, the period

of the phase 1 becomes longer and it takes more time for cells to conjugate, that is,

cells become older when the phase 2 starts. Further, the increase of the period of

the phase 1 causes the longer interval for the successive conjugation.

From the simulation results shown above, we conclude that aav and amax depend

strongly on the immature period aimm and the maximum conjugation probability

cmax, slightly on the transplantation rate y. On the other hand, they do not change

drastically when death probabilities are reduced considerably. They remain

unchanged in A-2, C-2, C-3, F-2 and G-2 (Table 1).

5. Discussion

We here challenged for the first time to estimate the life features of Paramecium

in nature. We constructed a population dynamics model of P. caudatum taking into

account conjugation. We first set the default parameters as follows: two paramecia

cells of one male and one female were allowed to start their life cycle in a flask

containing 1,000 ml culture medium; they divided exponentially at the rate of 0.9

with the death rate of 0.01 (phase 1) until reaching 106 cells, and starved for 4 days

(τ = 16) with the death rate of 0.01 and conjugated at the rate of 0.7 if both sexes

were mature or over 60 fissions old (phase 2). One % of the phase 2 population was

transplanted to a new flask containing 1,000 ml culture medium to restart the new

life cycle from the phase 1. They were defined to advance 1 age at 1 fission, and to

rejuvenate to age 0 by conjugation.

We derived evolution equations for the population at time t and age a and sex

s, N
(s)
t (a), and performed numerical simulations of the evolution equations by using

the default and optional parameters. The number of cells which conjugate was

calculated under several assumptions. We calculated the age distribution, average

and maximum ages (aav, amax, respectively) in a population at time t.

We found that the average and maximum ages were converged to 43 ± 2 and

140± 5 fissions under conditions with the default parameters. These numbers show

that average cells are immature and the most elderly cells are still vigorous, because

17



the immaturity period and the maximum clonal lifespan were set at 60 and 600

fissions, respectively. This situation is consistent with our experiences: when the

laboratory stocks become old and weaken we go collect samples from nature, which

are usually young and vigorous. We can say, therefore, that our model with the

default parameters is considered reasonable in mimicking the nature.

What was novel in this study was that we were able to examine for the first

time which parameters would affect most the age structure and to what extent

each parameter was effective. Among all of the parameters examined, the length of

immaturity period or the age at sexual maturation was pivotal to change the age

structure. Other parameters such as the number of cells constituting the starting

culture, the proportion of the transplantation, the fission probability and the death

probability at the phase 1, except for the probability of conjugation, contributed

little, if anything. By changing the probability of conjugation from 0.7 to 0.1, the

average and maximum ages were raised and converged to 65±2 and 188±5 fissions.

The parameters such as the death rate and the conjugation rate would change

drastically in nature depending on the presence or absence of the predators and

the mating partners. The default value of 0.01 for the death rate could be too

low in nature because paramecia would fall prey of many predators. We then tried

simulation by increasing the death rate 9 times larger to 0.09 in the phase 1 and

20 times larger to 0.2 in the phase 2 (G-3): the average and maximum ages were

converged to 46± 4 and 144± 5 fissions. Even the death rate far more severer than

this (F-3 and G-4) resulted in the convergence of the average and maximum ages

barely to 52± 6 and 167± 13 fissions. This indicates that the death rate is not the

parameter of much importance for the age structure.

The parameter values we used in this paper are set as real as possible especially

for the default parameters. The immaturity period aimm = 60 and the clonal lifespan

A(s) = 600 are the observed values for P. caudatum. Other default parameters such

as aint, cmax, pb(a), pd(a) and p̃d(a) also appear plausible from our experimental

studies, although the optional values are arbitrary. In order to investigate whether

the system is structurally stable or not, we performed simulations changing these
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parameters over a wide range. As a result, we found that the system behaviors are

quite robust by the change of these parameters.

Science of the lifespan faces to some difficult problems. For example, the

lifespan observed in nature are not identical to that observed under human control,

as exemplified by the big difference of the lifespan between a wild animal and the

same animal in a zoo or an aquarium. Besides, the lifespan of some organisms such

as Paramecium can be studied only in laboratory, where experiments are conducted

in a condition that never occurs in nature so that few data are available for their

natural features. These problems have been overcome by this computer simulation

study. However, one problem remains to be answered: what kind of world does our

simulation results represent, interspecies world or intraspecies world? The

interspecies rule should be distinguished from the intraspecies rule. For example,

the equation of Tmet = k W 0.25, where Tmet is the physiological time including the

lifespan and W is the body mass, can be applied to mammalian species

(Schmidt-Nielsen, 1984), but organisms with bigger W do not assure the longer

lifespan among individuals of the same species as seen in humans. Our simulations

using different values for the immaturity period should represent the interspecies

relation in nature, because the immaturity period and lifespan changed

proportionally as suggested from the interspecies relation (Smith-Sonneborn, 1981),

contrasting with the independency of the two factors revealed by our intraspecies

mutant study (Komori et al., 2005).

Simulations of our model were not only realistic but also robust and innovative

as shown by a stable behavior under different parameters and an emergence of the

unexpected age structure. We are thus provided for the first time with fresh insight

into the life of P. caudatum in nature.
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