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We study a neural network model for the inferior temporal cortex, in terms of finite memory loading
and sparse coding. We show that an uncorrelated Hopfield-type attractor and some correlated attractors
have multiple stability, and examine the retrieval dynamics for these attractors when the initial state is set
to a noise-degraded memory pattern. Then, we show that there is a critical initial overlap: that is, the
system converges to the correlated attractor when the noise level is large, and otherwise to the Hopfield-
type attractor. Furthermore, we study the time course of the correlation between the correlated attractors
in the retrieval dynamics. On the basis of these theoretical results, we resolve the controversy regarding
previous physiologic experimental findings regarding neuron properties in the inferior temporal cortex
and propose a new experimental paradigm.
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1. Introduction

Despite various studies, many questions remain concern-
ing the neurophysiologic properties of the inferior temporal
cortex, which is believed to be the final stage of vision.
Miyashita and Chang clarified that visual stimuli are
memorized within the inferior temporal cortex.1) In further
study, Miyashita had a monkey learn 97 fractal patterns
repeated in the same sequence, and then presented the same
fractal patterns to the monkey after learning while measuring
the firing rate patterns of neurons in the monkey’s inferior
temporal cortex. He found that when the monkey is
presented two fractal patterns that are nearer to each other
in the training sequential order, the correlation between
corresponding firing rate patterns becomes higher.2) Thus,
they concluded that time correlation regarding the learning
sequential orders of visual stimuli is converted to spatial
correlation regarding the firing rate patterns of the neuron
group.

Griniasty et al. and Amit et al. proposed an attractor
neural network model to explain Miyashita’s physiological
finding.3,4) Their models have attractors that are mixtures
of consecutively learned memory patterns. The correlation
graph between the attractor and consecutively learned
memory patterns takes the shape of a Gaussian distribution.
In other words, the attractor has a high correlation with one
particular memory pattern, and the correlation with other
memory patterns gradually becomes smaller. Such an
attractor is called a correlated attractor. Here, we explain
the correlated attractor in detail. When a memory pattern is
set in an initial state, the retrieved correlated attractor is
highly correlated with the presented memory pattern, and the
retrieved correlated attractor changes depending on the
presented memory pattern. Furthermore, when examining
the correlation between two retrieved correlated attractors,
the nearer the learning sequential orders of the presented

memory patterns are, the larger the correlation between the
retrieved correlated attractors is. They explained Miyashita’s
physiological finding using these properties. Their models
have also been studied by other researchers.5,6)

These models have a property showing that memory
patterns as well as correlated attractors can become the
equilibrium state by adjusting the learning parameter.
Furthermore, the correlated attractor and memory pattern
can become either a monostable state or a bistable state.
Clarifying such a complex property could lead to clues
that will help us elucidate the physiologic function of the
brain.

Previously, the models were studied under the condition
of a 50% firing rate. However, it is thought that sparse
coding is used in the actual brain based on a physiologic
finding and a theoretical viewpoint concerning the
brain.2,7–11) We therefore adopt sparse coding and add a
firing rate control operation to the attractor neural network
model, and study the stability and retrieval dynamics for
memory patterns and correlated attractors. We analyzed
these properties using statistical mechanics and computer
simulations. Moreover, we interpret the findings of certain
physiological experiments concerning neurons in the inferior
temporal cortex on the basis of the theoretical results
obtained here, and propose a new experimental paradigm.

2. Model

Our model consists of two layers, the associative layer and
firing rate control layer, as shown in Fig. 1. The associative
layer is a mutual connection network consisting of N

neurons, each of which can take either of two states (0 and
1). The firing rate control layer is a feedback loop to control
the firing rate of the neurons in the associative layer. For the
model of the 50% firing rate, no such firing rate control is
necessary to retrieve the memory patterns. In the sparse
coding scheme, however, the firing rate control explained in
the below is necessary to retrieve memory patterns, as shown
by Okada.11)�E-mail: kimoto@oita-ct.ac.jp
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First, we explain the neurons in the associative layer.
Asynchronous updating at a finite temperature is used for
the dynamics of associative layer neurons. In asynchronous
updating, one neuron is chosen at random from N neurons.
For example, let us assume that the ith neuron is chosen. The
internal state ui of the ith neuron is calculated as

utþ1
i ¼

XN
j6¼i

Jijx
t
j þ h� gI; ð1Þ

where Jij is the connection weight from the jth neuron to the
ith neuron, and h is the threshold value. I is the input from
the firing rate control layer, and g is a positive constant. The
probability that the state xi of the ith neuron becomes 1 is
decided by using ui as

Prob½xti ¼ 1� ¼ 1� Prob½xti ¼ 0�

¼
1þ tanhð�utiÞ

2
; ð2Þ

where � ¼ 1=T depends on the temperature T . Repeating
this procedure N times is one Monte Carlo step.

Next, we consider the neurons in the firing rate control
layer. The output I of neurons in the firing rate control layer
is determined using

I ¼
1

N

XN
j¼1

xtj � F: ð3Þ

When the firing rate ð1=NÞ
PN

j¼1 x
t
j in the associative layer

becomes greater than F, I becomes positive, and the firing
rate in the associative layer becomes lower at a time t þ 1. In
contrast, when the firing rate ð1=NÞ

PN
j¼1 x

t
j in the associative

layer becomes smaller than F, it has the opposite effect.
Thus, the firing rate control layer serves to make the firing
rate of the associative layer close to F.

The memory patterns stored in the model are N-
dimensioned vectors consisting of the binary values 0 and
1. The probability that each element ��i of the memory
pattern �� takes 1 is assumed to be F as the firing rate of the
associative layer.

Prob½��i ¼ 1� ¼ 1� Prob½��i ¼ 0� ¼ F: ð4Þ

Therefore, the mean value E½��i � of the memory pattern ��

also becomes F. Reducing this firing rate F results in a
sparse coding. The connection weight Jij from the jth neuron
to the ith neuron is determined using

Jij ¼
1

VN

Xs
�;�¼1

ð��i � FÞA��ð��j � FÞ; ð5Þ

A�� ¼ ��� þ a���1;� þ a��þ1;�; ð6Þ

where s is the number of memory patterns, V is a constant
shown in eq. (8), a is a correlation learning coefficient
between adjoined memory patterns, and � is Kronecker’s
delta. We assume that Jii ¼ 0.

The overlap m� between the retrieval state x and the
memory pattern �� is defined as

m� ¼
1

VN

XN
i¼1

ð��i � FÞhxii; ð7Þ

V ¼ Fð1� FÞ; ð8Þ

where V is a normalization constant for making m� ¼ 1

when the retrieval state x completely corresponds to the
memory pattern ��. hxii is the thermal mean value in the
state xi. The mean value of state x is defined as

M ¼
1

N

XN
i¼1

xi: ð9Þ

3. Theory

To examine the property of the equilibrium state, we
discuss the model in terms of statistical mechanics with
regard to the following Hamiltonian obtained from eqs. (1),
(3), (5), and (6). In this paper, we consider the case where
the number N of neurons is infinitely large, and the number s
of memory patterns is Oð1Þ irrespective of N.

H ¼ �
1

VN

XN
i6¼j

Xs
�;�¼1

ð��i � FÞA��ð��j � FÞxixj

� 2h
XN
i¼1

xi þ
g

N

XN
i 6¼j

xixj � 2gF
XN
i¼1

xi; ð10Þ

Z ¼ Trx expð��HÞ; ð11Þ

f ¼ �
1

�VN
log Z; ð12Þ

where the Hamiltonian of eq. (10) is twice that of the �1

spin model. In the 0; 1 spin model that this model uses, since
the amount of change in the Hamiltonian caused by a flip of
one spin is only half of that with the �1 spin model, the
factor 2 is necessary to be consistent with the probability of
eq. (2).

By using a saddle-point method, the free energy f of
eq. (12) becomes

f ¼
Xs
�;�¼1

m�A��m�

�
1

�V
log exp 2�

Xs
�;�¼1

m�A��ð��i � FÞ þ h� gðM � FÞ

" #( )
þ 1

 !* +* +
; ð13Þ

xI

Fig. 1. Model.
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and by using @ f =@m� ¼ 0 and @ f =@M ¼ 0, the order
parameter equations that determine m� and M that minimize
the free energy f become

m� ¼
1

V
ð��i � FÞ

1þ tanhð�uiÞ
2

� �� �
; ð14Þ

M ¼
1þ tanhð�uiÞ

2

� �� �
; ð15Þ

ui ¼
Xs
�;�0¼1

ð��i � FÞA��0m�0 þ h� gðM � FÞ; ð16Þ

where hh� � �ii stands for the average over concerning the
memory patterns f��g ¼ �1; . . . ; �s. The physical meaning of
m� is the overlap shown in eq. (7). The physical meaning of
M is the mean value of state x shown in eq. (9).

Let us assume that the system takes a state x with a
probability ptðxÞ at a time t, and an element xi flips from
x ¼ ðx1; x2; . . . ; xi; . . . ; xNÞ to Fix ¼ ðx1; x2; . . . ; ~xxi; . . . ; xNÞ,

~xxi ¼
1 xi ¼ 0

0 xi ¼ 1

�
; ð17Þ

with a probability wiðxÞ. Here, Fi is a spin flip operator that
changes the ith element xi to ~xxi. The master equation
describing the dynamics of ptðxÞ is given by

d

dt
ptðxÞ ¼

XN
i¼1

½ptðFixÞwiðFixÞ � ptðxÞwiðxÞ�: ð18Þ

One unit time for t in the above equation corresponds to 1
Monte Carlo step for eq. (2). In the equilibrium state,
ptðxÞ ¼ peqðxÞ and the above equation becomes
ðd=dtÞpeqðxÞ ¼ 0; then the detailed balanced equation is
described as

peqðFixÞ
peqðxÞ

¼
wiðxÞ
wiðFixÞ

: ð19Þ

Equation (19) is satisfied by assuming that the transition
probability wiðxÞ takes the form

wiðxÞ ¼
1� ð2xi � 1Þ tanhð�uiÞ

2
; ð20Þ

ui ¼
XN
j 6¼i

Jijxj þ h� gðM � FÞ: ð21Þ

Next, we derive the theoretical equation of retrieval
dynamics in the associative layer. Since the equilibrium state
is described by the overlap m� and the mean value M of the
state, the probability that the order parameters take the
values fm�g ¼ m1; . . . ;ms and M at a time t is given as

Ptðfm�g;MÞ ¼ Trx ptðxÞ�ðM �MðxÞÞ

�
Ys
�¼1

�ðm� � m�ðxÞÞ; ð22Þ

m�ðxÞ ¼
1

VN

XN
i¼1

ð��i � FÞxi; ð23Þ

MðxÞ ¼
1

N

XN
i¼1

xi: ð24Þ

The amount of change in Ptðfm�g;MÞ in eq. (22) becomes

d

dt
Ptðfm�g;MÞ ¼

Xs
�¼1

@

@m�
Ptðfm�g;MÞ

� m� �
1

V
ð��i � FÞ

1þ tanhð�uiÞ
2

� �� �� �

þ
@

@M
Ptðfm�g;MÞ

� M �
1þ tanhð�uiÞ

2

� �� �� �
; ð25Þ

ui ¼
Xs

�0;�00¼1

ð��
0

i � FÞA�0�00m�00 þ h� gðM � FÞ: ð26Þ

On the other hand, since the state of the model can be
described using only the overlap fm�g and M, even in a
transitional state, Ptðfm�g;MÞ can be described as

Ptðfm�g;MÞ ¼ �ðM �MðtÞÞ
Ys
�¼1

�ðm� � m�ðtÞÞ; ð27Þ

d

dt
Ptðfm�g;MÞ ¼

Xs
�¼1

@

@m�
Ptðfm�g;MÞ �

dm�

dt

� �

þ
@

@M
Ptðfm�g;MÞ �

dM

dt

� �
: ð28Þ

By comparing eqs. (25) and (28), the evolution equations for
the order parameter m� and M are obtained as

d

dt
m� ¼ �m� þ

1

V
ð��i � FÞ

1þ tanhð�uiÞ
2

� �� �
; ð29Þ

d

dt
M ¼ �M þ

1þ tanhð�uiÞ
2

� �� �
; ð30Þ

ui ¼
Xs
�;�0¼1

ð��i � FÞA��0m�0 þ h� gðM � FÞ: ð31Þ

The stationary state of eq. (29) agrees with eq. (14), which
describes the equilibrium state, and the stationary state of
eq. (30) similarly agrees with eq. (15).

4. Results

4.1 Equilibrium state of model
We next examine the equilibrium state of the model, with

the parameters set as F ¼ 0:05, s ¼ 13, a ¼ 0:7, h ¼ �0:7,
and g ¼ 10. We chose the feedback coefficient g and the
threshold value h so that it would allow the memory pattern
to reach the equilibrium state. For these parameters, we
examined the overlap m� ð1 � � � sÞ while increasing
temperature T . We found that four kinds of attractor were
relevant, and these are shown in Fig. 2 where the horizontal
axis is the temperature T and the vertical axis is the overlap
m� ð3 � � � 11Þ. To make the spread of the overlap m�

ð3 � � � 11Þ clearer, bar charts are also shown in Fig. 2.
The bar charts in Figs. 2(a), 2(b), and 2(d) show the spread
of the overlap at T ¼ 0:04, and the bar chart in Fig. 2(c)
shows the spread of the overlap at T ¼ 0:02. The equi-
librium state in Fig. 2(a) has a large overlap only with �7,
while the equilibrium states in the other cases have an
overlap spread around �7. The number of attractors changes
depending on temperature: four kinds of attractor are stable
when the temperature is low (T < 0:02), and only one
attractor in Fig. 2(b) is stable when the temperature is high
(T > 0:09).

We will refer to the attractor that has a large overlap with
only one memory pattern [Fig. 2(a)] as a Hopfield attractor
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and to the attractors that have nonzero overlaps with some
memory patterns [Figs. 2(b)–2(d)] as correlated attractors
1–3. Thus, there are many types of correlated attractor as
equilibrium states.

In the model of F ¼ 0:5, the firing rate of both the
Hopfield attractor and the correlated attractors automatically
becomes 0.5 without firing rate control, and the model has a
property showing that the Hopfield attractor and correlated
attractors can become the multiple stable state.6) In the
sparse coding scheme, it is necessary to control the firing
rate of the model by using the firing rate F of the memory
pattern as mentioned in §2. Then, it can be easily understood
that the Hopfield attractor, which looks like the memory
pattern, can become equilibrium state. In this study, it has
been clarified that the correlated attractor can also become
the equilibrium state, as mentioned above. Therefore, the
model holds the property showing that the Hopfield attractor
and the correlated attractors can become the multiple stable
state. Although a detailed description is omitted, a qual-
itatively similar multiple stability has also been observed in
other values of F.

Let us consider the effect of the coefficient g. If this
coefficient g is too small, the effect of bringing the firing rate
close to F weakens, then the critical temperatures Tc
becomes lower. Oppositely, if g is too large, the amount of
the feedback loop of firing rate control becomes excessive
and trajectories go out of the basin of the Hopfield attractor

or the correlated attractors. Thus each attractor becomes
unstable. We set g ¼ 10 so that the Hopfield attractor and
correlated attractors become stable.

4.2 Model dynamics
We now examine the retrieval dynamics of the attractors

that reach an equilibrium state at T ¼ 0:04 by numerical
calculations. We use a state that has a nonzero overlap only
with the memory pattern �7 as an initial state x0. The method
to generate the initial state is explained in detail in the
following. The x0i of the ith neuron where �7i ¼ 1 is flipped
to 0 with a probability f , and that of the ith neuron where
�7i ¼ 0 is flipped to 1 with the same number. Consequently,
x0 in this case has a nonzero overlap only with �7, and the
overlap m7 becomes

m7 ¼
1

VN

XN
i¼1

ð�7i � FÞx0i ¼
1� F � f

1� F
: ð32Þ

Figure 3 shows the results of the retrieval dynamics. Here,
the initial overlap was assumed to be m7 ¼ 0:76, 0.74, or
0.56. Figures 3(a)–3(c) show the aspects that the trajectories
go toward the Hopfield attractor, the correlated attractor 1
and the correlated attractor 3, respectively. Thus the retriev-
al state depends on the initial overlap.

We also show the result of retrieval dynamics for various
initial overlaps in Fig. 4. Here, the horizontal axis is the
overlap m7 and the vertical axis is the overlap m6 (¼ m8).
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Fig. 2. Four kinds of attractors with multiple stability: (a) Hopfield attractor, (b) correlated attractor 1, (c) correlated attractor 2, and (d) correlated

attractor 3.
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We examine the retrieval dynamics by numerical calcula-
tions and confirm these results by computer simulations. In
Fig. 4, the initial state x0 has a nonzero overlap with only �7,
so that the retrieval begins from the horizontal axis. The
trajectory goes toward the Hopfield attractor when the initial
overlap m7 > 0:76, toward the correlated attractor 1 when
the initial overlap is 0:74 < m7 < 0:76, and toward the
correlated attractor 3 when the initial overlap is 0:56 <
m7 < 0:74. A critical initial overlap exists and the resultant

attractor differs depending on this overlap. These results are
consistent with the numerical calculations and computer
simulations (N ¼ 200;000). Incidentally, trajectories do not
go toward the correlated attractor 2 because it is already
unstable at T ¼ 0:04.

At any F, qualitatively similar attractors become multiple
stable states as mentioned in chapter 4.1. The system
retrieves one of these attractors. If g is too small, the Tc of
these attractors decreases and stability becomes weak, then
the basins of the attractors become narrow. Oppositely, if g
is too large, the amount of the feedback loop of firing rate
control becomes excessive and trajectories go out of the
basin of the Hopfield attractor or correlated attractors. Thus,
each attractor cannot be retrieved.

Next, we examine the correlation between the attractors in
this model as well as in the physiological experiment by
Miyashita. Before discussing the results, we will explain
Miyashita’s experiment using the present model. Miyashita
had a monkey learn memory patterns �� (1 � � � s)
repeated in the same sequence. Afterwards, they presented
�� (1 � � � s) to the monkey, and observed the firing rate
pattern �� ð1 � � � sÞ of an inferior temporal cortex
neuron. Furthermore, he examined the correlation between
the firing rate patterns represented by
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Fig. 3. Numerical calculation result of overlap dynamics at T ¼ 0:04.
m3; . . . ;m11 are shown. Retrieval state depends on initial overlap: (a)

hopfield attractor [m7ðt ¼ 0Þ ¼ 0:76], (b) correlated attractor 1

[m7ðt ¼ 0Þ ¼ 0:74], and (c) correlated attractor 3 [m7ðt ¼ 0Þ ¼ 0:56].
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Fig. 4. Result of (a) numerical calculation and (b) computer simulation of

overlap dynamics at T ¼ 0:04. Only m7{m6ð;m8Þ are shown.
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Cð�; �Þ ¼
1

jCj
XN
i¼1

ð��
i � ����Þð��

i � ����Þ; ð33Þ

where �� is the same as the x, ���� is the average firing rate of
the firing rate pattern, and jCj is a normalization constant for
the correlation Cð�; �Þ. Through this experiment, he found
that the larger the difference j�� �j of learning sequence
numbers is, the lower the correlation between the firing rate
patterns �� and �� is.

We also examine the time course of Cð�; �Þ, although
Miyashita obtained the above experimental result by
analyzing the stationary state of the neuron response. To
examine the time course of the correlation Cð�; �Þ, we
calculate it using the time course of m� ð1 � � � sÞ:

Cð�; �Þ ¼
1

jCj
hhð��

i � ����Þð��
i � ����Þii; ð34Þ

��
i ¼

1þ tanh �
Ps

�;�0¼1ð��i � FÞA��0m�0 þ h� gI
� 	
 �

2
; ð35Þ

���� ¼
1þ tanh �

Ps
�;�0¼1ð��i � FÞA��0m�0 þ h� gI

� 	
 �
2

* +* +
:

ð36Þ
Figure 5 shows the correlation function with an initial
overlap m7 ¼ 0:76, 0.74, or 0.56. The three lines in each
graph show the time course of the correlation in the retrieval
dynamics. When the state goes toward the Hopfield
attractors, the correlation Cð�; �Þ does not tend to spread,
as shown in Fig. 5(a). In particular, the spread of the
correlation Cð�; �Þ is narrow in the equilibrium state
(t ¼ 1). On the other hand, when the state goes toward
the correlated attractors, the correlation Cð�; �Þ spreads so
much as shown in Figs. 5(b) and 5(c). Moreover, the
correlation Cð�; �Þ tends to spread depending on elapsed
time. This is because the model has an essential property
showing that the presented memory pattern excites adjacent
consecutive memory patterns one after another owing to
the structure of the connection weights of eq. (5) and a
correlated attractor is eventually retrieved. Incidentally, we
also observed a similar dynamics for a monostable param-
eter, although Fig. 5 shows only results for a multiple stable
parameter.

5. Discussion

Here, we discuss the current understanding of the findings
of certain physiological experiments concerning neurons of
the inferior temporal cortex on the basis of the obtained
theoretical results. First, we consider the findings regarding
the contradiction of the results of two physiologic experi-
ments using the model with multiple stability. Tanaka et al.
and Fujita et al. used single-cell recording, and showed that
the neurons of the inferior temporal cortex respond selec-
tively to a partial feature of visual stimuli.12,13) On the other
hand, Gochin et al.14) examined neuron response using a
stimulus set that is different from the visual stimuli used by
Tanaka and Fujita, and showed that the selectivity of the
response of the neuron is weak, that many neurons respond
to many visual stimuli, and that only firing strength changes
depending on the type of visual stimulus. If the visual system
of the inferior temporal cortex is composed of a dynamical
system and it executes visual processing using the attractors,

there is no question even if a few differences in the visual
stimulus cause quite different responses. To explain this
contradiction, we propose three hypotheses: the inferior
temporal cortex has the same structure as that in the Amit
model,3,4) which has some stable attractors; the response of
Tanaka–Fujita-type neurons corresponds to the Hopfield
attractor; and the response of Gochin-type neurons corre-
sponds to a correlated attractor.

We then explain these hypotheses in detail. Some
physiological findings and theoretical viewpoints suggest
that the sparse coding scheme is used in the brain.2,7–11) If a
neuron group is in a state corresponding to the Hopfield
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Fig. 5. Time course of correlation between attractors at T ¼ 0:04: (a)

m7 ¼ 0:76, (b) m7 ¼ 0:74, and (c) m7 ¼ 0:56.
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attractor under sparse coding, the neurons in the group seem
to selectively respond to a specific feature. That is, each
neuron shows the feature selectivity of the Tanaka–Fujita
type. However, if a neuron group is in a state corresponding
to a correlated attractor, the feature selectivity of the neurons
seems weak because neurons respond to many features. That
is, each neuron shows the feature selectivity of the Gochin-
type. Furthermore, the similarity between the characteristics
of these attractors and the response of the physiologic
neurons is consistent with the corresponding experimental
paradigms. Tanaka et al. and Fujita et al. determined the
feature selectivity of neurons by gradually reducing the
visual stimulus from complex figures to simple figures.
Apparently, the visual stimuli they use, that is, visual stimuli
with a large overlap, are stimuli to which the inferior
temporal cortex neurons respond significantly. On the other
hand, the method by Gochin et al. differs from that by
Tanaka and Fujita in the sense that they examined neuron
response using visual stimuli prepared beforehand. In other
words, Gochin et al. chose visual stimuli without consider-
ing what images neurons have learned, while Tanaka et al.
and Fujita et al. chose visual stimuli through the reduction
method. Therefore, Gochin et al.’s visual stimuli were not
the most appropriate for these neurons.

Here, we propose a physiological experiment that may
verify this hypothesis. First, the optimum visual stimulus for
inferior temporal cortex neurons is determined through the
reduction method used by Tanaka et al. and Fujita et al.
Next, the noise is superimposed on the visual stimulus, as
carried out by Shidara et al.15) and Amit et al.16) Then, the
noise level is changed and the feature selectivity of the
neuron is measured. Thus, it can be determined whether the
firing strength of an initially excited neuron decreases and
instead other neurons begin to respond suddenly when the
noise level exceeds a certain boundary. This will enable us
to estimate the possibility that the state will change into a
different attractor when the noise level exceeds a certain
boundary. To determine whether the state is drawn toward
another attractor, without quantitatively measuring the
change in the firing strength, the autocorrelation function
of the response fluctuations of a neuron can be examined.
Tanimoto et al. reported that the autocorrelation function of
neuron response fluctuations differs between the Hopfield
attractor and the correlated attractor in the Amit model.17)

Next, we propose the analysis of the transition property of
the neurons in the Miyashita’s experiment, on basis of our
finding regarding the retrieval dynamics of the correlated
attractor. The correlation function diverges as time, as
shown in Fig. 5. This is because the correlated attractor is
progressively generated by iteration dynamics due to the
connection matrix, as shown in eqs. (5) and (6). It is possible
that the correlated attractor is created in one shot throught a
feed-forward connection from a visual stimulus without
iteration dynamics. However, the change in the correlation
function as time, as shown in Fig. 5, would not occur
without iteration dynamics. Therefore, measurement of the
time course of the correlation is one way to test whether the
Amit model is appropriate. The time course of the
correlation has not been measured in Miyashita’s experi-
ment, so it will be useful to examine the time course of the
neuron response in detail. If the structure of the inferior

temporal cortex can be described by the Amit model, the
transition from the response of the Hopfield attractor type to
the response of the correlated attractor type would be
observed by adding external noise to stimuli. Moreover, the
time course of the neuron group response can be analyzed
through principal component analysis, the clustering tech-
nique or mutual information.18,19) Examining the time course
of the neuron group response enables us to search for
evidence supporting the Amit model and indicating that
iteration dynamics is used in the brain.

6. Conclusions

We examined the sparsely encoded attractor neural
network model with a firing rate control operation, and
analyzed the stability and retrieval dynamics for the Hop-
field attractor and correlated attractors. We found the
parameter region where the Hopfield attractor and correlated
attractors are stable. In addition, small differences in the
initial state change the retrieval attractor. Furthermore, we
examined not only the static correlations between the
correlated attractors, as in Miyashita’s experiment, but also
the time course of those correlations in the retrieval
dynamics. Then we found that the correlation function
spreads gradually as time. Our theoretical results suggest a
consistent explanation for physiologic findings regarding
neurons of the inferior temporal cortex, which seem contra-
dictory, and we have proposed new paradigms for physio-
logical experiments.
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