
Stability Analysis of Attractor Neural Network Model

of Inferior Temporal Cortex

—Relationship between Attractor Stability and Learning Order—

Tomoyuki KIMOTO
�, Tatsuya UEZU1, and Masato OKADA2;3

Oita National College of Technology, Oita 870-0152, Japan
1Graduate School of Sciences and Humanities, Nara Women’s University, Nara 630-8506, Japan

2Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
3RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan

(Received December 7, 2009; accepted March 1, 2010; published May 25, 2010)

Miyashita found that the long-term memory of visual stimuli is stored in the monkey’s inferior
temporal cortex and that the temporal correlation in terms of the learning order of visual stimuli is
converted into spatial correlation in terms of the firing rate patterns of the neuron group. To explain
Miyashita’s findings, Griniasty et al. [Neural Comput. 5 (1993) 1] and Amit et al. [J. Neurosci. 14 (1994)
6435] proposed the attractor neural network model, and the Amit model has been examined only for the
stable state acquired by storing memory patterns in a fixed sequence. In the real world, however, the
learning order has statistical continuity but it also has randomness, and the stability of the state changes
depending on the statistical properties of learning order when memory patterns are stored randomly.
In addition, it is preferable for the stable state to become an appropriate attractor that reflects the
relationship between memory patterns by the statistical properties of the learning order. In this study, we
examined the dependence of the stable state on the statistical properties of the learning order without
modifying the Amit model. The stable state was found to change from the correlated attractor to the
Hopfield or Mp attractor, which is the mixed state with all memory patterns when the rate of random
learning increases. Furthermore, we found that if the statistical properties of the learning order change,
the stable state can change to an appropriate attractor reflecting the relationship between memory
patterns.

KEYWORDS: inferior temporal cortex, Miyashita’s physiological experiment, Amit model, correlated attractor,
learning order, stability

DOI: 10.1143/JPSJ.79.064001

1. Introduction

Miyashita and Chang had a monkey learn 100 fractal
patterns and showed that neurons in the monkey’s inferior
temporal cortex selectively respond to fractal patterns.1) In
a further study, Miyashita had a monkey learn 97 fractal
patterns repeated in a fixed sequence and then presented the
fractal patterns to the monkey after learning while measuring
the firing rate patterns of neurons in the monkey’s inferior
temporal cortex.2) He found that the smaller the difference
between the learning orders of each presented fractal pattern,
the larger the spatial correlation between the corresponding
firing rate patterns. Furthermore, he showed that there was
mutual spatial correlation among about eight consecutive
firing rate patterns in the learning order. Miyashita was thus
the first to show that long-term memory of visual stimuli is
stored in the monkey’s inferior temporal cortex and that the
temporal correlation in terms of the learning order of visual
stimuli is converted into spatial correlation in terms of the
firing rate patterns of a neuron group.

Griniasty et al. and Amit et al. proposed an attractor
neural network model based on the Hopfield model to
explain Miyashita’s physiological findings.3,4) They used
visual stimuli in the inferior temporal cortex as the memory
patterns of their model, and assigned learning order to the
memory patterns. Their model stores not only the memory
patterns learned by auto-correlation learning but also the

adjoining memory patterns learned by cross-correlation
learning. Hereafter, we will call their model the Amit model.
With this modified learning, the memory patterns become
unstable even if they are stored. The retrieval process is
started by presenting an arbitrary memory pattern to the Amit
model after learning, and consecutive memory patterns are
mixed into the retrieval state one after another, like a chain
reaction. In equilibrium, the retrieval state has the highest
spatial correlation with the presented memory pattern, and
the correlation graph between the retrieval state and each
memory pattern takes the shape of a Gaussian distribution.3,4)

Such a retrieval state in equilibrium is called the correlated
attractor. When examining the spatial correlation between
the correlated attractors that are retrieved from different
memory patterns, the smaller the difference between the
learning orders of the presented memory patterns, the larger
the spatial correlation between the retrieved correlated
attractors. Thus, the temporal correlation in terms of the
learning order of the memory patterns is converted into
spatial correlation in terms of the firing rate patterns of a
neuron group, as shown by Miyashita’s physiological
findings. The Amit model is quite useful because it can be
used to explain the physiological findings by assuming only
a slight improvement in the learning rule of the Hopfield
model. In fact, the basic properties of the Amit model have
also been examined by other researchers,5,6) and the model
has been used to explain many of the physiological
findings.7–9) Furthermore, the Amit model has also been
applied to transformation-invariant recognition.10,11)�E-mail: kimoto@oita-ct.ac.jp
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The Amit model has been examined only when the
correlated attractor is acquired by storing the memory
patterns in a fixed sequence. In the real world, however,
the learning order has statistical continuity, but it also has
randomness. Even if the learning rule of the Amit model
is fixed, it is predictable that the stability of the state will
change depending on the statistical properties of the learning
order when memory patterns are stored randomly, and a
stable state automatically changes from a correlated attractor
to another attractor. We are now investigating the change
in the correlated attractor’s stability when the statistical
properties of the learning order are changed. We also
examined whether the memory patterns become stable when
the degree of randomness in the statistical property of the
learning order becomes larger. Furthermore, we examined
whether the stable state can change to an appropriate
attractor that reflects the relationship between memory
patterns showed by the statistical properties of the learning
order.

2. Model

The Amit model is a mutual connection network con-
sisting of N neurons, each of which can take either of two
states (�1). Asynchronous updating at a finite temperature is
used.

In asynchronous updating, one neuron is chosen at
random from N neurons. For example, let us assume that
the ith neuron is chosen. The internal state ui of the ith
neuron is given by

ui ¼
XN
j 6¼i

Jijxj; ð1Þ

where Jij is the connection weight from the jth neuron to the
ith neuron, and xj is the jth neuron’s state. The probability
that state xi of the ith neuron is �1 is determined using ui:

Prob½xi ¼ �1� ¼
1� tanhð�uiÞ

2
; ð2Þ

where � ¼ 1=T depends on the temperature T .
The memory patterns ��, (1 � � � p) stored in the model

are N-dimensional vectors consisting of the binary values
�1. � is the serial number of a memory pattern, and p is
the number of memory patterns. The probability that each
element ��i of the memory pattern �� takes �1 is given by

Prob½��i ¼ �1� ¼
1

2
; ð1 � � � p; 1 � i � NÞ: ð3Þ

In the Amit model, the connection weight Jij from the jth
neuron to the ith neuron is determined using

Jij ¼
1

N

Xp
�¼1

ða��i �
��1
j þ ��i �

�
j þ a��i �

�þ1
j Þ; ð4Þ

where �0i ¼ �
p
i and �pþ1

i ¼ �1i . In the learning rule, the
memory patterns are stored on the basis of auto correlation
learning, and adjoining memory patterns in the learning
order are stored on the basis of cross-correlation learning.
The correlation learning coefficient between adjoining
memory patterns is a. We assume that Jii ¼ 0.

In our study, the connection weight Jij is determined using
the following rule to take into account the statistical property
of the learning order:

Jij ¼
1

VN

XV
v¼1

Xp
�¼1

ða��i �
�0

j þ �
�
i �
�
j þ a��i �

�00

j Þ;

ð�0 6¼ �; �00 6¼ �Þ; ð5Þ

Prob½ð��
0

j ¼ �
��1
j Þ \ ð�

�00

j ¼ �
�þ1
j Þ� ¼ b; ð6Þ

Prob½ð��
0

j 6¼ �
��1
j Þ [ ð�

�00

j 6¼ �
��1
j Þ� ¼ ð1� bÞ; ð7Þ

where the repetitive learning of p times in eq. (5) is one
learning cycle, and this cycle is repeated V times. In the
original Amit model, only one learning cycle needs to store
the memory patterns since the learning order is fixed. In
the learning rule of eq. (5) used in our study, a very large
number of learning cycles are executed because stored
memory patterns are stochastically determined. It is assumed
that the consecutive learning of the same memory pattern
is avoided except the learning corresponding to the second
term of eq. (5), that the regular learning proposed by Amit
et al. is executed with the probability shown in eq. (6), and
that the irregular learning is executed with the probability
shown in eq. (7). This model corresponds to the original
Amit model when b ¼ 1. Hereafter, we call the learning rule
at b ¼ 1 Amit learning and the learning rule at b ¼ 0 random
learning. Learning gradually changes from Amit learning to
random learning as b changes from one to zero.

We define the overlap between the retrieval state x and the
memory pattern �� as

m� ¼
1

N

XN
i¼1

��i hxii; ð8Þ

where hxii is the thermal mean of xi. If the thermal mean of
retrieval state x is exactly equal to the memory pattern ��,
then m� is equal to 1.

3. Theory

To analyze the properties of the retrieval state using
statistical mechanics, we transform the synaptic weight Jij of
eq. (5) using eqs. (6) and (7) into an analytical form. From
the Amit learning and random learning shown in eqs. (6)
and (7), when V is very large, the learning rule becomes
equivalent to

Jij ¼
1

N

Xp
�;�¼1

��i A���
�
j ; ð9Þ

A�� ¼ ��� þ abð��;��1 þ ��;�þ1Þ

þ 2
að1� bÞ
p� 1

ð1� ���Þ; ð10Þ

where � is Kronecker’s delta. In complete Amit learning,
the third term on the right side of eq. (10) is omitted since
b ¼ 1. In complete random learning, the second term on the
right side is omitted since b ¼ 0, so auto correlation learning
for each memory pattern is executed, and cross-correlation
learning with all memory patterns is executed with a
probability of 2a=ðp� 1Þ.

To illustrate the property of the retrieval state in equi-
librium, we discuss the model in terms of statistical
mechanics with regard to the following Hamiltonian H,
obtained from eqs. (1), (9), and (10). We consider the case in
which the number of neurons N is infinitely large, and the
number of memory patterns p is Oð1Þ irrespective of N:
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H ¼ �
1

2N

XN
i 6¼j

Xp
�;�¼1

��i A���
�
j xixj; ð11Þ

Z ¼ Tr
x

expð��HÞ; ð12Þ

f ¼ �
1

�N
log Z; ð13Þ

where Z is the partition function and f is the free energy.
Using the saddle-point method, we obtain the free energy

f ¼
1

2

Xp
�;�¼1

m�A��m�

�
1

�
log 2 cosh �

Xp
�;�¼1

m�A���
�
i

 !" #* +* +
; ð14Þ

where hh�ii stands for the average over the memory patterns
� ¼ ð�1; . . . ; �p), that is hh�ii ¼ ð1=2pÞ

P
f��¼�1g �. Using

@ f =@m� ¼ 0, we obtain the order parameter equation that
determines m� that minimizes the free energy:

m� ¼ hh��i tanhð�uiÞii; ð15Þ

ui ¼
Xp
�;�¼1

��i A��m�: ð16Þ

The physical meaning of m� is the overlap shown in eq. (8).
The evolution equation for the overlap m� is obtained as

follows in accordance with the study by Uezu et al.8)

dm�

dt
¼ �m� þ hh��i tanhð�uiÞii; ð17Þ

ui ¼
Xp
�;�¼1

��i A��m�: ð18Þ

Using this evolution equation of the order parameter, we can
examine the retrieval process of the model. The stationary
state of eq. (17) agrees with eq. (15), which describes the
retrieval state in equilibrium.

4. Results

As described above, in the Amit model, consecutive
memory patterns are mixed into the retrieval state one after
another, like a chain reaction, because it stores consecutive
memory patterns by cross-correlation learning, as shown in
eq. (4). The parameters a, b, and T determine how many
memory patterns are mixed into the retrieval state in
equilibrium. Figure 1 shows three typical attractors that
can become stable states in the Amit model. The horizontal
axis shows the serial number of the memory pattern �, and
the vertical axis shows the overlap between memory patterns
and the retrieval state. Figure 1(a) shows a correlated
attractor. The correlated attractor in the figure is retrieved
by presenting the 7th memory pattern. The correlation
function has a shape like a Gaussian distribution function
with consecutive memory patterns. The chain reaction of the
retrieval process stops when about four consecutive memory
patterns are mixed into the retrieval state. The width of this
chain reaction changes depending on the parameters a, b,
and T . We will call the attractor shown in Fig. 1(b) the
Hopfield attractor. The Hopfield attractor in the figure is
retrieved by presenting the 7th memory pattern. The chain
reaction does not occur greatly, so the Hopfield attractor is
the retrieval state that has a large spatial correlation with the
presented memory pattern, a small spatial correlation with

the adjoining memory patterns, and a zero spatial correlation
with other memory patterns. As shown in the figure, it is
almost the same as the presented memory pattern since
m7 � 1:0; however, we do not call it the memory pattern,
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Fig. 1. Three types of attractors in Amit model: (a) correlated attractor,

(b) Hopfield attractor, and (c) Mp attractor.
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instead the Hopfield attractor because the adjoining memory
patterns are included a bit in the retrieval state. We call
the attractor shown in Fig. 1(c) the Mp attractor. It is the
retrieval state in which the chain reaction extends to all
memory patterns. All overlaps m1–mp have the same value
because the Mp attractor is the retrieval state into which all
memory patterns are mixed with symmetry.

Figure 2 shows the phase diagram of these three attractors
at p ¼ 21. To obtain Fig. 2, we used the method described
below. Each attractor was presented as the initial state of the
model, and the retrieval dynamics shown in eqs. (1) and (2)
was repeated until the network reaches the equilibrium state.
We then examined whether the attractor maintains its
stability for various a, b, and T values. First, we explain
the phase diagram of the original Amit model shown in
Fig. 2(a) with b ¼ 1:0. The broken line is the critical
temperature Tc below which the correlated attractor remains
stable. It increases rapidly at approximately a ¼ 0:35 and
subsequently decreases gradually as a increases to 1.0. The
solid line is the critical temperature Tc below which the
Hopfield attractor remains stable. It decreases as a increases,
and the Hopfield attractor becomes unstable at a > 0:5. The
dotted line is the critical temperature Tc of the Mp attractor.
The inside of the oval arc extending to approximately a ¼
0:7 is an unstable area of the Mp attractor. At a < 0:7, the
Mp attractor is stable at low temperatures, and becomes
unstable if temperature is increased; then it becomes stable
again if temperature is further increased. In previous studies,
the temporary unstable area for the Mp attractor surrounded
by the oval arc shown in Fig. 2(a) has not been found. At
0 < a < 1, the dotted line rising sharply toward the upper
right continues to increase linearly outside the frame and
reaches Tc ¼ 3:0 at a ¼ 1:0. As mentioned above, the Amit
model has multiple stability, and the number of stable states
depends on the values of the parameters such as a and T .

The closed/open circles are used in explaining of Fig. 3.
Next, the results obtained when the rate of random learning
was increased by decreasing b, are shown in Figs. 2(b) and
2(c). For the correlated attractor, the stable area shown in
Fig. 2(b) becomes smaller than that shown in Fig. 2(a); it
disappears in Fig. 2(c). For the Hopfield attractor, the stable
area shown in Figs. 2(b) and 2(c) gradually extends toward
the right as b is decreased. For the Mp attractor, the
temporary unstable area disappears in Figs. 2(b) and 2(c).
On the other hand, there is no change in the dotted line rising
sharply toward the upper right.

Figure 3 shows the phase diagram that represents the
horizontal axis as b. The horizontal axis on the far right
(b ¼ 1:0) corresponds to complete Amit learning, and the
horizontal axis on the far left (b ¼ 0) corresponds to
complete random learning. The closed/open circles at b ¼
1:0 shown in Fig. 3 correspond to those shown in Fig. 2(a).
The lines correspond to the theoretical values, and the error
bars show the average value and standard deviation from
computer simulation. To obtain Fig. 3, we used a method
similar to that described above: Each attractor was presented
as the initial state of the model, and we examined whether
the attractor maintains its stability for various a, b, and T

values. In the simulation, we examined Tc at N ¼ 20;000 or
greater. The simulation results correspond well to the lines
for the theoretical values.

For the correlated attractor with a ¼ 0:4, as b decreases
from 1.0, the Tc of the attractor also decreases, and the
attractor becomes unstable at b ¼ 0:73. For the Hopfield
attractor, as b decreases from 1.0, Tc increases. The Tc of
the Mp attractor does not depend on b and is constant at
Tc ¼ 1:8. In addition, the temporary unstable area between
the two open circles for the Mp attractor at b ¼ 1 disappears
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Fig. 2. Phase diagram representing horizontal axis as a ( p ¼ 21): (a) b ¼
1:0, (b) b ¼ 0:8, and (c) b ¼ 0:3. (a) Phase diagram for the original Amit

model. The broken line is the critical temperature Tc below which the

correlated attractor remains stable, and the solid line is the critical

temperature Tc below which the Hopfield attractor remains stable. The

dotted line extending toward the upper right is the critical temperature Tc

below which the Mp attractor remains stable, but the inside of the oval arc

is an unstable area of the Mp attractor. (b,c) Phase diagrams obtained

when the rate of random learning was increased.
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rapidly when b decreases from 1.0. Similarly, for a ¼ 0:5,
as b decreases from 1.0, The Tc of the correlated attractor
decreases, and the attractor becomes unstable at b ¼ 0:85.
Although the Hopfield attractor was unstable at b ¼ 1:0,
when b decreases from 1.0, Tc increases. The Mp attractor
shows the same property as the Mp attractor with a ¼ 0:4.
Similarly, for a ¼ 0:6, when b decreases from 1.0, the Tc of
the correlated attractor decreases, and the attractor becomes
unstable at b ¼ 0:9. The Hopfield attractor becomes stable at
b < 0:5. When b decreases from 0.5, the Tc of the Hopfield

attractor increases. For 0:5 < b < 0:9, the Hopfield and
correlated attractors are unstable; only the Mp attractor
remains stable. The Mp attractor shows the same property as
the Mp attractor with a ¼ 0:4 and 0.5. The random learning
reduces the Tc of the correlated attractor and increases that
of the Hopfield attractor.

Figure 4 shows the aspect of the phase transition of the
overlap m�. Each attractor overlaps with memory patterns,
as shown in Fig. 1. Therefore, the retrieval state for the
correlated attractor is shown by the many lines of m� � 0:6,
0.4, 0.1, and 0.05, the retrieval state for the Hopfield
attractor is shown by the line of m� � 1:0, and the retrieval
state for the Mp attractor is shown by the line of m� � 0:18.
The phase transition temperatures in Fig. 4(a) correspond to
those at b ¼ 1:0 shown in Fig. 3(a), and the phase transition
temperatures in Fig. 4(b) correspond to those at b < 1:0
shown in Fig. 3(a). Figure 4 shows that, regardless of b,
the first-order phase transition occurs for the Hopfield and
correlated attractors, and the second-order phase transition
occurs for the Mp attractor. Although the results for the
other parameters are omitted here, the orders of the phase
transitions for the three attractors for various values of a and
b are the same as those for a ¼ 0:4 and b ¼ 1.

The phase diagram in Fig. 3 shows the attractor’s stability
when the attractor is presented as the initial state, and the
retrieval dynamics shown in eqs. (1) and (2) is repeated
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at a temperature lower than Tc. Thus, a few attractors can
become bistable states when each attractor is presented as
the initial state. For example, in Fig. 3(c), both the correlated
and Mp attractors become bistable states at a ¼ 0:6, b ¼
0:95, and T ¼ 0:1, and both the Hopfield and Mp attractors
become bistable states at a ¼ 0:6, b ¼ 0:3, and T ¼ 0:1.
However, it is important to identify which attractor is
retrieved from the memory pattern because the memory
pattern is presented as the initial state in an actual situation.
It is easy to predict which attractor is retrieved from the
memory pattern using Fig. 3. The retrieval state changes
one after another as ‘‘the presented memory pattern ! the
Hopfield attractor ! the correlated attractor ! Mp attrac-
tor’’ by the chain reaction mechanism of the learning rule,
and the transition of the retrieval state stops at the stable
attractor that was retrieved earlier during the retrieval
process. For example, although both the correlated and Mp

attractors become bistable states at a ¼ 0:6, b ¼ 0:95, and
T ¼ 0:1 in Fig. 3(c), it is predicted that the retrieval state
will become the correlated attractor in equilibrium because it
is retrieved earlier than the Mp attractor. Similarly, although
both the Hopfield and Mp attractors become bistable states at
a ¼ 0:6, b ¼ 0:3, and T ¼ 0:1 in Fig. 3(c), it is predictable
that the retrieval state becomes the Hopfield attractor in
equilibrium because it is retrieved earlier than the Mp

attractor. Moreover, since only the Mp attractor becomes
the stable state at a ¼ 0:6, b ¼ 0:7, and T ¼ 0:1 in Fig. 3(c),
it is predictable that the retrieval state becomes the Mp

attractor in equilibrium. Figure 5 shows the results of
numerical calculation using the overlap dynamics shown
in eq. (17) for the three parameters mentioned above, when
the memory pattern is presented as the initial state. In
accordance with the prediction, the trajectory shown in
Fig. 5(a) points toward the state that corresponds to the
correlated attractor shown in Fig. 1(a), the trajectory shown
in Fig. 5(b) points toward the state that corresponds to the
Hopfield attractor shown in Fig. 1(b), and the trajectory
shown in Fig. 5(c) points toward the state that corresponds
to the Mp attractor shown in Fig. 1(c). Although the results
for the other parameters are omitted, it was numerically
confirmed that trajectories converged to the predicted states
for various values of a, b, and T .

5. Conclusion

Miyashita showed that the temporal correlation in terms
of the learning order of visual stimuli is converted into
spatial correlation in terms of the firing rate patterns of a
neuron group, in the monkey’s inferior temporal cortex. To
explain Miyashita’s findings, Griniasty et al. and Amit et al.
proposed the attractor neural network model demonstrating
that the memory patterns are converted to the correlated
attractor.

The Amit model has been examined only when the
correlated attractor is acquired by storing the memory
patterns in a fixed sequence. In the real world, however, the
learning order has statistical continuousness, but it also has
randomness. The stability of the correlated attractors should
change in accordance with the statistical properties of the
learning order. Therefore, we examined the stability of the
attractor on the Amit model when the degree of randomness
becomes large. We found that the stability of the correlated

attractor has weakened gradually when the rate of the
random learning increased. Furthermore, we examined what
type of attractor becomes a stable state in accordance with
the statistical properties of the learning order. We found that
the stable state changed from the correlated attractor to the
Mp attractor when the rate of the random learning increased,
and the stable state changed from the Mp attractor to the
Hopfield attractor when the rate of the random learning
further increased.

It is preferable for the stable state to become an
appropriate attractor that reflects the statistical properties
of the learning order because the learning order has
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information on the relationship between memory patterns.
Here, we consider whether the correlated, Mp, and Hopfield
attractors appropriately reflect the relationship between
memory patterns. If the learning order is always fixed, not
only information that consecutive memory patterns have the
mutual relation but also information on the learning order is
important. In this case, the stable state of the model becomes
the correlated attractor that reflects the relationship between
the memory patterns, and the learning order. If the random-
ness of the learning order is strong, the possibility that the
memory patterns are unrelated and independent mutually is
high. In this case, the stable state of the model becomes the
Hopfield attractor that shows only one memory pattern. If
the learning order has moderate continuity, the possibility
that the memory patterns have mutual relation but have no
information on the learning order is high. In this case, the
stable state of the model becomes the Mp attractor, which
indicates that the memory patterns have mutual relation but
have no information on the learning order. As mentioned
above, we think that when the statistical properties of the
learning order change, the stable state can change to an the
appropriate attractor reflecting the relationships between
memory patterns.
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