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We study the problem of performance evaluation of code-division multiple-access (CDMA) multiuser
detectors by means of statistical mechanics using the replica method. The replica symmetric solutions
were analyzed previously. As is well known, the replica symmetric solution becomes unstable when the
temperature (magnitude of noise) is lowered. In this paper, we investigate both the behavior and the
stability of the replica symmetric solutions in the low temperature region. We find that the solutions have
complicated bifurcation structures in the low temperature region where the solutions coexist. We also
find that there are two types of replica symmetry breaking, Almeida–Thouless (AT)-instability and
freezing. We obtain the one-step replica symmetry breaking solution in each case. Further, we compare
the theoretical results with the results from the Monte-Carlo simulations. Consequently, we find that the
theoretical results agree with the numerical simulations.
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1. Introduction

The method for the performance evaluation of code-
division multiple-access (CDMA) multiuser detectors in the
large-system limit was established by Tanaka using the
replica method.1) Since then, many studies have shown that
the replica method is applicable in many cases, such as
arbitrary input distribution,2) arbitrary additive channel
noise,3) and MIMO (multi-input multi-output) channels.4–6)

Although the validity for the replica method in mathe-
matics has not been proved yet, this method turns out to be
very useful because it has been applied in many models and
results have not contradicted any numerical simulations.
In the replica analysis, first of all, solutions are derived
under the assumption of replica symmetry. It is necessary to
investigate the stability of replica symmetric (RS) solutions,
and when stability breaks, the replica symmetry breaking
solutions have to be considered. However, in previous
studies of CDMA models, only the RS solutions have been
considered.

We treat a model of the binary phase shift keying direct-
sequence CDMA (BPSK-DS/CDMA) system. We consider
additive white Gaussian channel noise and the marginal
posterior mode (MPM) detector and evaluate its perform-
ance. The conditions for the breaking of replica symmetry
in this system were established by Tanaka.1) When the
posterior of the MPM detector is written in the form of
canonical distribution, the Hamiltonian of this system is
similar to that of a spin glass model with an external field
and to that of the anti-Hopfield model in neural networks.7,8)

In spin glass models, the anti-Hopfield model and others,
RS solutions become unstable at low temperatures. In the
CDMA models, the temperature parameter corresponds to
the variance of channel noise. In this paper, we focus on low

temperature regions since this is where the breaking of
replica symmetry is expected. We investigate the behavior
and Almeida–Thouless (AT)-stability, entropies, and the free
energies of RS solutions in the low temperature regions.
Appropriate solutions are AT-stable and have non-negative
entropies. Further, when solutions coexist, the solution
which has the minimum free energy should be identified.
When the replica symmetry breaks, we investigate the
behavior of one-step replica symmetry breaking (1RSB)
solutions.9)

The results are as follows. When the temperature is
lowered, the coexistence region of RS solutions appears.
In this region, RS solutions have complicated bifurcation
structures. As for the stability of RS solutions, there are two
types of replica symmetry breaking: AT-instability RSB, and
freezing RSB in which the entropy becomes 0. In both cases,
1RSB solutions are obtained. The results by Monte-Carlo
simulations agree with the theoretical results, except where
RS solutions coexist and thermodynamic transition temper-
ature is as low as T ¼ 0:05.

The paper is organized as follows: In §2, we explain the
model. See ref. 1 for details. In §3, we describe the behavior
of RS solutions, and in §4, we investigate the stability of
the RS solution and derive the 1RSB solutions. In §5, we
compare the theoretical results with the results by the
Monte-Carlo simulations. Section 6 is devoted to summary
and discussion.

2. The Model

Now we consider the N-user CDMA channel. The
information bit of user i is denoted by �i, which takes
a �1 value. The spreading sequence of user i is
f��i ;� ¼ 1; . . . ; pg, and ��i ¼ �1. We assume that �i and
��i are independently generated from identical unbiased
distributions. Further, we assume that the channel noise is
additive white Gaussian noise fn�;� ¼ 1; . . . ; pg with a�E-mail: mika@ki-rin.phys.nara-wu.ac.jp
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mean of 0 and a variance of �2
0 . Then, the received signal

is expressed as follows:

y� ¼
1ffiffiffiffi
N
p

XN
i¼1

��i �i þ n� ð� ¼ 1; . . . ; pÞ: ð1Þ

For later use, we define y � ðy1; . . . ; ypÞT, � � ð�1; . . . ; �NÞT,
n � ðn1; . . . ; npÞT, and ð�Þ�i � �

�
i , � ¼ 1; . . . ; p; i ¼

1; . . . ;N, where T denotes the transpose. Then, the relation
(1) is expressed as

y ¼
1ffiffiffiffi
N
p ��þ n:

Since the channel noise is Gaussian, the conditional
distribution of the received signals y, conditioned on the
information bits � given the spreading sequences �, is
expressed as follows:

pðy j �; �Þ ¼
1ffiffiffiffiffiffiffiffiffiffi

2��2
0

p exp �
1

2�2
0

y�
1ffiffiffiffi
N
p ��

����
����2

 !
; ð2Þ

where �2
0 is the variance of the true Gaussian distribution and

k � k denotes the Euclidean norm.
CDMA multiuser detectors decode the true information

bit � from the received signal y and the spreading sequence
�.10) Let us denote the estimated value of � by s �
ðs1; . . . ; sNÞT where si ¼ �1. Then, the conditional distribu-
tion of the received signal y, conditioned on information
bit s given the spreading sequences �, is expressed as

pðy j s; �Þ ¼
1ffiffiffiffiffiffiffiffiffiffi

2��2
p exp �

1

2�2
y�

1ffiffiffiffi
N
p �s

����
����2

 !
; ð3Þ

where �2 is the variance of the posterior Gaussian
distribution, and, in general, differs from the variance �2

0

of the true Gaussian distribution. To estimate s, it is
necessary to know the posterior distribution pðs j y; �Þ that is
the conditional distribution of s conditioned on y given �.
Assuming uniform prior distribution, by the Bayesian
formula,11–13) the posterior distribution is given as follows:

pðs j y; �Þ ¼ Zðy; �Þ
� ��1

exp �
1

2�2
ky� N�1=2�sk2

� �
; ð4Þ

Zðy; �Þ ¼
X
s

exp �
1

2�2
ky� N�1=2�sk2

� �
: ð5Þ

Here we define temperature parameters as T0 ¼ ��1
0 ¼ �2

0

and T ¼ ��1 ¼ �2, then the above posterior distribution can
be rewritten as a canonical distribution with a Hamiltonian
HðsÞ as follows:

pðs j y; �Þ ¼ Zð�Þ
� ��1

expð��HðsÞÞ; ð6Þ

Zð�Þ ¼
X
s

expð��HðsÞÞ; ð7Þ

HðsÞ ¼
1

2

X
ij

Jijsisj �
X
i

h0
i si; ð8Þ

Jij ¼
1

N

Xp
�¼1

��i �
�
j ; h0

i ¼
1ffiffiffiffi
N
p

Xp
�¼1

��i y
�: ð9Þ

We find that the Hamiltonian HðsÞ is similar to that of spin
glass models with an external field and the anti-Hopfield
model.7,8)

Zð�Þ is the partition function, and the free energy of this
system F is given by F ¼ �1=� log Zð�Þ. We assume self-
averaging in the large system limit N; p!1, in which
� � p=N is fixed to a positive constant. Then the free energy
per user becomes equal to the averaged free energy per
user over the information symbols, the spreading sequences
and the noise. Therefore, in the following, we evaluate the
averaged free energy per user f . Then, f is expressed as

f ¼ � lim
N!1

1

�N
logZð�Þ
� 	

;

where ½�� denotes the average over information symbols,
spreading sequences and noise. To evaluate [log Zð�Þ], we
use the replica method. In the replica method, we use an
identity

log Zð�Þ
� 	

¼ lim
n!0

Zð�Þn
� 	

� 1

n
:

We calculate [Zð�Þn] for an integer n. Then taking the n! 0

limit, we obtain [log Zð�Þ]. Introducing n replicated random
variables sa ¼ ðsa1; . . . ; saNÞ

T, a ¼ 1; . . . ; n, Zð�Þn is expressed
as follows:

Zð�Þn ¼
Yn
a¼1

X
sa

exp �
1

2�2
ky� N�1=2�sak2

� �
:

The macroscopic parameters Ra (a ¼ 1; . . . ; n) and qab

(a < b) are defined as follows:

Ra ¼
1

N
�Thsai; qab ¼

1

N
hsaiThsbi: ð10Þ

Here, h�i denotes the average over the posterior distribution.
Further, we introduce R̂Ra (a ¼ 1; . . . ; n) and q̂qab (a < b),
which are the conjugate parameters of Ra and qab,
respectively.

Under the replica symmetry ansatz Ra ¼ R, qab ¼ q,
R̂Ra ¼ R̂R, and q̂qab ¼ q̂q, the free energy fRS of the RS solution
is given as

�� fRSðq; q̂q;R; R̂R; �; �0; �Þ ¼ �
�
�

1

2
ln 1þ �ð1� qÞ
� �

�
�ð1þ q� 2Rþ ��1

0 Þ
2 1þ �ð1� qÞ
� � þ

1þ �0

2�0

�

�

þ
Z

Dz ln 2 coshð
ffiffiffî
qq

p
zþ R̂RÞ


 �
�

q̂q

2
ð1� qÞ � RR̂R; ð11Þ

where Dz � dz=
ffiffiffiffiffiffi
2�
p

expð�z2=2Þ. From this, the saddle point equations (SPEs) are obtained as
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R ¼
Z

Dz tanhð
ffiffiffî
qq

p
zþ R̂RÞ; ð12Þ

q ¼
Z

Dz tanh2ð
ffiffiffî
qq

p
zþ R̂RÞ; ð13Þ

R̂R ¼
��

1þ �ð1� qÞ
; ð14Þ

q̂q ¼
��2ðq� 2Rþ 1þ ��1

0 Þ
1þ �ð1� qÞ
� �2 : ð15Þ

The definition of Ra is given by eq. (10), that is, the overlap
between the true information bit vector and its averaged
estimate vector. If the true information bit vector and its
averaged estimate vector agree, we obtain R ¼ 1. The
relationship between the overlap R and the bit-error rate Pb

is Pb ¼ ð1� RÞ=2. So, we use the overlap R as an index to
evaluate the performance of decoding.

3. Behavior of Solutions at Low Temperatures

At low temperatures, that is, in the case of small noise, we
investigated the behavior of the RS solutions of SPEs.

It is known that RS solutions coexist at low temperatures.
In Fig. 1, we display the � dependence of R at T ¼
T0 ¼ 0:05. When the solutions coexist, we call three
coexisting solutions branch 1, branch 2, and branch 3 as
shown in Fig. 1.

The coexistence region of RS solutions at T0 ¼ 0 has been
investigated in detail.8) The spinodal line of this case in
ð�; TÞ space is shown in Fig. 2. We denote the boundary
between branch 1 and branch 2 by � ¼ �1;2ðTÞ, and the
boundary between branch 2 and branch 3 by � ¼ �2;3ðTÞ.
�1;2ðTÞ is shown by a solid curve, and �2;3ðTÞ is shown by a
dotted curve. The RS solutions coexist in the region enclosed
by �1;2ðTÞ and �2;3ðTÞ. �1;2ðTÞ is larger than �2;3ðTÞ. As is
clearly seen from Fig. 2, the region of � in which solutions
coexist attains the maximum at T ¼ T0 ¼ 0 and becomes

gradually narrower as T becomes larger.
Now, we investigate the case of T0 6¼ 0. To search for the

coexistence region of RS solutions, we examined spinodal
lines in ð�; TÞ space with T0 fixed (Fig. 3). From Fig. 3,
we note that when T0 is increased from 0, the maximum
temperature T up to which the solutions coexist gradually
decreases. At the same time, the region of coexistence of
the solutions in the ð�; TÞ space becomes smaller, and it
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branch 1
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Fig. 1. Coexistence of solutions (T ¼ T0 ¼ 0:05).
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Fig. 2. Spinodal line at T0 ¼ 0. Solid curve: �1;2ðTÞ, dotted curve: �2;3ðTÞ.
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Fig. 3. Spinodal line. Solid curve: �1;2ðTÞ, dotted curve: �2;3ðTÞ.
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almost disappears at T0 ¼ 0:1. As for � ¼ �2;3ðTÞ (i.e., the
boundary between branch 2 and branch 3), we note that it
attains the minimum value in the vicinity of T ¼ T0. Thus,
it seems that the minimum value of �, above which branch 3
appears, is attained at T ’ T0. On the other hand, as for
� ¼ �1;2ðTÞ, i.e., the boundary between branch 1 and
branch 2, when T0 6¼ 0, as temperature T is decreased
below T0, we found that it is very difficult to obtain �1;2ðTÞ
numerically. This is because the solution has a different
structure from that in Fig. 1, and we can no longer define
branch 1 and branch 2. We study these structures in detail
in the following.

We examined the � dependence of R with T0 ¼ 0:03 fixed
and taking T near T0 (Fig. 4). We find the continuous
sigmoidal-shaped solution in the left and center panels of
Fig. 4, by which the spinodal lines in Fig. 3 were obtained.
In the left and center panels of Fig. 4, we find a closed curve
which differs from it. As we can see in the center and right
panels of Fig. 4, these solutions collide at the vicinity of
T ¼ T0, and are recombined to two separate solutions.

We also examine the T dependence of R with T0 and �
fixed. In Fig. 5, we display the T dependence of R at T0 ¼
0:03, � ¼ 0:54 (left panel) and at T0 ¼ 0:03, � ¼ 0:52 (right
panel). There are two separate solutions in the left panel
of Fig. 5. One is a continuous sigmoidal-shaped solution.

The other is a solution which exists only in the low
temperature region of T � T0. As noted from the results of
the spinodal lines, the boundary value of � between branch 1
and branch 2 of the sigmoidal-shaped solution becomes
smaller as temperature T is lowered. When the boundary
reaches the vicinity of T ¼ T0, it connects to the other
solution, and the recombination of the solutions takes place
as in the right panel of Fig. 5.

Since branch 1 cannot be defined when the recombination
takes place in the vicinity of T ¼ T0, a continuous spinodal
line cannot be defined either.

4. Spinodal Lines, AT-Lines, Zero-Entropy Lines,
and One-Step Replica Symmetry Breaking (1RSB)
Solutions

In the previous section, we showed the behavior of the RS
solutions at low temperatures. In this section, since at low
temperatures the breaking of replica symmetry is observed
in similar models such as spin glass models with similar
Hamiltonians to the present model, we investigate the
stability of the RS solutions and when it breaks, we derive
1RSB solutions.

Entropy sRS is defined as the partial derivative of the free
energy with respect to T:

sRS ¼ �
@

@T
fRS

¼
R̂Rð1� q� 2RÞ

2
� q̂qð1� qÞ �

�

2
lnð1þ �ð1� qÞÞ þ

Z
Dz ln 2 coshð

ffiffiffî
qq

p
zþ R̂RÞ


 �
:

The eigenvalue 	 of the replicon mode in the RS solution is
obtained as follows:14) 	 ¼ 1�

��2

ð1þ �ð1� qÞÞ2

Z
Dz sech4ð

ffiffiffî
qq

p
zþ R̂RÞ:

The zero-entropy lines and the AT-lines are defined as
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Fig. 4. � dependence of R at T0 ¼ 0:03. T is near T0.
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Fig. 5. T dependence of R at T0 ¼ 0:03. Vertical dotted line shows temperature T ¼ T0.
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sRS ¼ 0 and 	 ¼ 0, respectively.
In the upper panel of Fig. 6, we display the AT-line and

zero-entropy line in the ð�; TÞ space at T0 ¼ 0:2, where the
RS solutions do not coexist. In the lower panel of Fig. 6,
in addition to the spinodal line, we display the AT-lines and
the zero-entropy lines for all branches at T0 ¼ 0:05, where
the RS solutions coexist. The region below the AT-line and
zero-entropy line corresponds to the AT-unstable region
and the freezing region where the RS entropy becomes
negative.

Now, let us examine the AT-lines and zero-entropy lines
at T0 ¼ 0:2. In this case, only one branch exists, and the
AT-line and zero-entropy line have one humped shape.

Two lines intersect at � ¼ �ð1Þc ’ 0:65. Therefore, as T is
decreased, the freezing takes place first for � < �ð1Þc , and the
AT-instability takes place first for � > �ð1Þc . Thus, as in the
case that there are no coexistent RS solutions in the ð�; TÞ
space, when the AT-line and the zero-entropy line intersect,
we find that the stability of the RS solution breaks because
of the freezing in one region of �. In the other region of
�, the stability of the RS solution breaks because of the
AT-instability.

Next, let us look at the AT-lines and zero-entropy lines at
T0 ¼ 0:05. See the lower panel of Fig. 6. The AT-lines for
the three branches are connected. The same is true for the
zero-entropy lines. These lines fold back on �1;2ðTÞ, and for
� near �1;2ðTÞ inside the coexistence region, the lower lines
and upper lines correspond to branch 1 and branch 2,
respectively. The lines also fold back on �2;3ðTÞ, and for �
near �2;3ðTÞ inside the coexistence region, the lower lines
and upper lines correspond to branch 3 and branch 2,
respectively. At T0 ¼ 0:05, the AT line and zero-entropy
line for branch 2 intersect at � ¼ �ð2Þc ’ 0:49. Therefore,
inside the coexistent � region, as T is decreased, the freezing
takes place first for all � region for branch 1 and �ð2Þc < � for
branch 2, and the AT-instability takes place first for all � for
branch 3 and �ð2Þc > � for branch 2.

The AT-stability and the value of entropy in each branch
change depending on T0. We do not go into details here but
only mention one common feature independent of T0. That
is, when the AT-line turns around at �2;3ðTÞ and �1;2ðTÞ, T is
equal to T0 (Nishimori-line). It was proved theoretically by
Tanaka.1)

Thus, we find two different scenarios of replica symmetry
breaking, the freezing and the AT-instability. When � and T0

are given, neither scenario of the RSB occurs when T is high
enough. As T is decreased, either the AT-instability or the
freezing occurs depending on � and T0. We call the case in
which the AT-instability takes place first, case 1, and in
which the freezing takes place first, case 2, when T is
decreased. Now, let us derive the RSB solution in each case.

In case 1, under the one-step replica symmetry breaking
ansatz, the free energy f1RSB and the SPEs are obtained as

� � f1RSBðq1; q̂q1; q0; q̂q0;R; R̂R;m; �; �0; �Þ

¼ �
�
�

1

2
ln 1þ �ð1� q1Þ
� �

�
1

2m
ln

’

1þ �ð1� q1Þ

� �
�ð1þ q0 � 2Rþ ��1

0 Þ
2’

þ
�

2
ð1þ ��1

0 Þ
�

�
q̂q1

2
þ

1

m
I þ

1� m

2
q̂q1q1 �

m

2
q̂q0q0 � RR̂R; ð16Þ

q1 ¼
Z

Dz
1

K

Z
Dt�m tanh2ð

ffiffiffiffiffi
q̂q0

p
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂q1 � q̂q0

p
t þ R̂RÞ; ð17Þ

q0 ¼
Z

Dz
1

K

Z
Dt�m tanhð

ffiffiffiffiffi
q̂q0

p
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂q1 � q̂q0

p
t þ R̂RÞ

� 2

; ð18Þ

R ¼
Z

Dz
1

K

Z
Dt�m tanhð

ffiffiffiffiffi
q̂q0

p
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂q1 � q̂q0

p
t þ R̂RÞ; ð19Þ

q̂q1 ¼ ��2 q1 � q0

ð1þ �ð1� q1ÞÞð1þ �ð1� q1Þ þ m�ðq1 � q0ÞÞ
þ q̂q0; ð20Þ
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Fig. 6. Spinodal line (solid curve), AT-line (dashed curve) and zero-

entropy line (dashed-dotted curve). Upper panel: T0 ¼ 0:2. Lower panel:

T0 ¼ 0:05.
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q̂q0 ¼
��2ð1þ ��1

0 þ q0 � 2RÞ
ð1þ �ð1� q1Þ þ m�ðq1 � q0ÞÞ2

; ð21Þ

R̂R ¼
��

1þ �ð1� q1Þ þ m�ðq1 � q0Þ
; ð22Þ

ðq̂q1 � q̂q0Þf1þ �ð1� q1Þ þ m�q1g
2�

¼
�

2m
ln

1þ �ð1� q1Þ þ m�ðq1 � q0Þ
1þ �ð1� q1Þ

� �
�

1

m
I þ

Z
Dz

1

K

Z
Dt�m ln �; ð23Þ

’ ¼ 1þ �ð1� q1Þ þ m�ðq1 � q0Þ;

I ¼
Z

Dz lnK; K ¼
Z

Dt�m; � ¼ 2 coshð
ffiffiffiffiffi
q̂q0

p
zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂q1 � q̂q0

p
t þ R̂RÞ:

In case 2, we take the Krauth–Mézard limit q1 ! 1 and q̂q1!1 as in the case of the Ising perceptron.15) Though this is an
ansatz, from the numerical results shown below, we consider it valid. Then, the free energy of the 1RSB solution f1RSB is
related to that of the RS solution fRS as

f1RSBðq1 ¼ 1; q̂q1 ¼ 1; q0; q̂q0;R; R̂R;m; �; �0; �Þ ¼ fRSðq0;m
2q̂q0;R;mR̂R;m�; �0; �Þ: ð24Þ

The SPEs are those for the RS solution plus the zero entropy condition, sRS ¼ 0. When the solutions of these equations are
denoted as qc, q̂qc, Rc, R̂Rc, and �c, then the 1RSB solution is expressed by

q0 ¼ qc; q̂q0 ¼ m�2q̂qc; R ¼ Rc; R̂R ¼ m�1R̂Rc; m ¼
�c

�
:

Since m � 1, the 1RSB solution is valid for T � Tc.

Now, we investigate the behavior of solutions in ð�; TÞ
space with T0 fixed. See Fig. 6. First, we investigate the
case in which there is no region of coexistence of RS
solutions. In this case, as temperature T is lowered, case 2
takes place in the region for � < �ð1Þc and case 1 takes place
for � > �ð1Þc . Here, �ð1Þc is the value of � where the AT-line
and the zero-entropy line intersect. We examine the T

dependence of R in both cases. In the left panel of Fig. 7,

we display the T dependence of R at parameters where
case 1 takes place. This figure corresponds to the parameters
indicated by the vertical solid line in the left panel of Fig. 8.
In the right panel of Fig. 7, we display the T dependence
of R at the parameters where case 2 takes place. This figure
corresponds to the parameters indicated by the vertical
dotted line in the left panel of Fig. 8. In both � ¼ 0:9 (left
panel) and � ¼ 0:6 (right panel) cases, we find R of the
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RS solution decreases at least initially as T is lowered from
the temperature where the replica symmetry breaking takes
place. We also find R of the 1RSB solution is larger than that
of the RS solution.

Next, we show the results of the � dependence of R at
T0 ¼ 0:2. In the left panel of Fig. 9, we display the result
of the � dependence of R at T ¼ 0:1 which is higher than
the temperature where the AT-line and zero-entropy line
intersect. This figure corresponds to the parameters indicated
by the horizontal solid line in the right panel of Fig. 8. In the
right panel of Fig. 9, we display the � dependence of R at
T ¼ 0:05, which is lower than the temperature of intersec-
tion. This figure corresponds to the parameters indicated by
the horizontal dotted line in the right panel of Fig. 8. From
the right panel of Fig. 8, we note that case 1 takes place at
T0 ¼ 0:2 and T ¼ 0:1. On the other hand, at T0 ¼ 0:2 and
T ¼ 0:05, case 2 takes place for 0:47 < � < 1:18 and case 1
does for 1:18 < � < 1:42. As seen from Fig. 9, in both cases
the value of R for the RS solution approaches 1 as � becomes
large. Furthermore, in both cases, though the value of R

for the 1RSB solution is larger than that for the RS solution,
the difference of R between the RS solution and 1RSB
solution is very small.

Now, we investigate the case in which solutions coexist.
As we discussed above, we found that case 1 takes place for
branch 3 and case 2 takes place for branch 1 in this case.
Furthermore, as seen from the right panel of Fig. 10, even at
the Nishimori temperature T ¼ T0, case 2 takes place for
branch 1. It is worth noting because it was proved by
Nishimori that the RS solution is always stable at the
Nishimori temperature.16) So, we investigate the behavior of
solutions at Nishimori temperature. In this paper, we show

the results of T ¼ T0 ¼ 0:05. We have obtained similar
results at T ¼ T0 ¼ 0:01, 0.03. As seen from the right panel
of Fig. 10, we note that at the Nishimori temperature
T ¼ T0 ¼ 0:05, branch 1 is AT-stable in all � regions and
has negative entropy in the large � region, branch 2 is
AT-unstable in all � regions and has negative entropy in the
large � region, and branch 3 is AT-stable and has positive
entropy in all � regions. Thus, we do not consider branch 2
because of the AT-instability in all � regions. Let �s be the
value of � where the value of the entropy for branch 1
becomes 0. The region where the freezing 1RSB for
branch 1 appears is � > �s. In the left panel of Fig. 10,
we display the � dependence of R at the Nishimori line
T ¼ T0 ¼ 0:05. The vertical dotted line in this figure
indicates the value of � where the free energy f1 for
branch 1 of the RS solution becomes equal to the free energy
f3 for branch 3 of the RS solution. We denote this � value
by �th. For � < �th, f1 < f3 and for � > �th, f1 > f3. We
compared �s with �th and found �th < �s although �th is
very close to �s. Therefore, we concluded that when � is
increased from 0, the first order phase transition from the
RS solution for branch 1 to that for branch 3 takes place
at � ¼ �th. Both of the RS solutions are AT-stable and
have positive entropies. We also obtained the same results at
T ¼ T0 ¼ 0:01, 0.03. Thus, in the case of T ¼ T0, when � is
increased from 0, it is considered that the thermodynamic
transition from the RS solution for branch 1 to that for
branch 3 takes place just before the appearance of 1RSB
solution due to the freezing, that is, the 1RSB solution for
branch 1 is always metastable. Therefore, this result is
consistent with the conclusion by Nishimori that the replica
symmetry does not break on the Nishimori line.16)
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5. Comparison between Theoretical Results
and Numerical Simulations

In this section, we compare the theoretical results obtained
in the previous sections and the results by Monte-Carlo
simulations (MCS). Here, we briefly describe the method of
simulation. We performed the MCS with an annealing
procedure. We started the annealing procedure at T ¼ 1 and
then decreased to T ¼ 0:01 in increments of �T ¼ 0:01. We
confirmed that the results are the same when a different
annealing schedule is adopted. For example we started at
� ¼ 1 and increased to � ¼ 200 in increments of �� ¼ 1.
We used several values for the system size. In this paper, we
display the results for N ¼ 400. We obtained almost the
same results for the larger value of N. The information bit
f�ig, the spreading sequence f��i g and the initial condition
fsig of the estimate value of f�ig are independently generated
from identical, unbiased distributions. The noise fn�g is
generated from the Gaussian distribution. Generating differ-
ent sets of f��i g, fn�g and fsig but fixing f�ig, we took 100
samples.

First, we investigated the region where the RS solutions
coexist. In Fig. 11, we display the simulation results of the T

dependence of R, which correspond to the theoretical results
of Fig. 7 at T0 ¼ 0:2 and � ¼ 0:9 (case 1, left panel) and
T0 ¼ 0:2 and � ¼ 0:6 (case 2, right panel). As seen from
Fig. 11, the simulation results agree with the theoretical
results of the RS solutions in the high temperature region.
On the other hand, in the low temperature region where
the 1RSB solution exists, the values of R for both the RS and
the 1RSB solutions lie within the error bars of simulations
and in particular, the average value of the simulation agrees

with the results of 1RSB solution very well.
Next, in Fig. 12, we display the simulation results of the �

dependence of R, which correspond to the theoretical results
of Fig. 9. At T ¼ 0:1 and T0 ¼ 0:2 where only case 1 takes
place (the left panel of Fig. 12), we cannot decide which of
the RS or the 1RSB solutions is realized by the simulation
because the 1RSB solution is very close to the RS solution.
At T ¼ 0:05, T0 ¼ 0:2 where both case 1 and case 2 take
place (the right panel of Fig. 12), in the region where the
1RSB solutions appear, the values of R for both the RS and
1RSB solutions lie within the error bars of the simulations.
In particular, the average value of the simulations agrees
with the results of the 1RSB solutions very well.

Now, we investigate the case in which the RS solutions
coexist. In particular, we focus on the situation where case 2
takes place for branch 1 on the Nishimori-temperature,
T ¼ T0. From the theoretical analysis, it is expected that as �
is increased from 0, a thermodynamic transition from the RS
solution for branch 1 to that for branch 3 takes place just
before the appearance of 1RSB solution due to the freezing.
In Fig. 13, we display the simulation results of � dependence
of R at the Nishimori temperature T ¼ T0 ¼ 0:05, which
corresponds to the theoretical result in the left panel of
Fig. 10. The simulation results agree with the RS solution
both for � < �s and for the � region where only the RS
solution for branch 3 exists. However, in the region where
the 1RSB solution appears, the simulation results seem to be
trapped in the metastable 1RSB solutions. The reason for
this is believed to be that the temperature T ¼ T0 is too low
to realize the thermodynamic transition in the present
annealing schedule. In fact, we observed the thermodynamic
transition by simulations in the region where the transition
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temperature is high. For example, when T0 ¼ 0:05 is fixed,
the thermodynamic transition is observed at T 	 0:2. To
observe the thermodynamic transition when the transition
temperature is low, we have to set an appropriate annealing
schedule. We also noted in Fig. 13 that the numerical errors
of the simulation results are large in the region where the
1RSB solution appears. To determine why, we calculated the
histogram of overlap R for each sample. As is seen from
Fig. 14, at � ¼ 0:6, for the majority of samples R is nearly
equal to 1, and branch 3 is realized. On the other hand, for
� ¼ 0:55 and 0.57, there are mainly two groups of samples,
for one of which R is nearly equal to 1 and for the other
of which R ranges from 0.4 to 0.8. It is considered that
samples with R 
 1 realize the RS solution for branch 3, and
samples with R ¼ 0:4{0:8 realize the metastable 1RSB
solution and other metastable solutions. We think this is the
reason for large errors of R in the simulation.

6. Summary and Discussion

We investigated the problem of the performance
evaluation of the DS-CDMA multiuser detector model in
low temperature regions using the replica method. We also
compared theoretical results with results of Monte-Carlo
simulations.

This model has three parameters: temperature T0 that
corresponds to the variance of the Gaussian channel noise,
estimated temperature T , and ratio � of the number of
chips of spreading codes to the number of users.

As for the stability of RS solutions, we found two types
of the breaking of the replica symmetry. One is due to AT-
instability (case 1), and the other is due to freezing (case 2).

The coexistence of RS solutions is possible for T � 0:1.

The behavior of the solutions is different depending on
whether RS solutions coexist. In the following, we describe
the behavior of the solutions in each case.

When there is no region of coexistence of RS solutions
in ð�; TÞ space with T0 fixed, both cases 1 and 2 can occur.
In both cases, the value of R for the 1RSB solution is larger
than the RS solution, but the difference is so small that it is
indistinguishable by simulations. Therefore, we conclude
that the performance of the 1RSB solution is nearly equal to
the RS solution.

When a region of coexistence of RS solutions exists in
ð�; TÞ with T0 fixed, the behavior of the solutions becomes
complicated. Also, in this region, both cases 1 and 2 can take
place. This region is divided into two more regions: where
RS solutions bifurcate and where they do not.

First, we summarize and discuss the results on AT-
stability, entropies, and free energies of RS solutions at
Nishimori temperatures T ¼ 0:01, 0.03, and 0.05 that we
investigated. We found a sigmoidal-shaped solution that
satisfies R ¼ q, as in Fig. 1, when we look at the �
dependence of R. It is necessary to identify a solution which
is AT-stable, and has non-negative entropy and the mini-
mum free energy. We found that solutions that are AT-stable
and have positive entropies are branch 3 of the sigmoidal
solution and branch 1 of the sigmoidal solution for � < �s.
Branch 2 turned out to be AT-unstable. Furthermore, a
closed curve solution exists with R 6¼ q that is AT-unstable,
too. On the other hand, the free energy of branch 1 is less
than branch 3 for � < �th and vice verse for � > �th.
Comparing �th with �s, we found that �th < �s, although
these values are very close. Therefore, solutions which have
the minimum free energy are branch 1 for � < �th and
branch 3 for � > �th. As for the 1RSB solution emerging
from branch 1 at � ¼ �s due to freezing, its free energy
is identical to branch 1. Thus, the 1RSB solution is
metastable. Therefore, we found that the breaking of replica
symmetry for a metastable RS solution that takes place at
Nishimori temperature does not contradict a well-known
result by Nishimori in which replica symmetry for the
dominant solution does not break at Nishimori temper-
ature.16)

On the other hand, for other temperatures than Nishimori
temperatures, a 1RSB solution with the minimum free
energy due to freezing might appear when RS solutions
coexist. An example is shown in Fig. 15. As well as in
Nishimori temperature, in this case, when we look at the �
dependence of R, a distorted sigmoidal solution and a closed
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curve solution exist, and �s and �th are defined. We found
that �s < �th holds. Thus the 1RSB solution due to freezing
has minimum free energy for �s < � < �th. At T0 ¼ 0:05

and T ¼ 0:04, we found �s ¼ 0:46 and �th ¼ 0:5. In this �
region, the value of R for the 1RSB solution due to freezing
is smaller than that for the RS solution for branch 1, but the
difference of R is very small. Therefore, we conclude that
the performance of the 1RSB solution is nearly equal to the
RS solution for branch 1 for �s < � < �th. We also found
that case 1 occur at T 6¼ T0; that is, the branch 3 solution
becomes AT-unstable, and a 1RSB solution appears. How-
ever, its free energy is less than branch 1, and this 1RSB
solution is also metastable.

Next, we discuss the bifurcation of RS solutions. The
region where bifurcation takes place is located at low T0 and
T near or lower than the Nishimori temperature. When the
sigmoidal curve overlaps with the closed curve with R 6¼ q

at Nishimori temperature, if T is slightly changed from
T0 with T0 fixed, recombination between the sigmoidal
and closed curves takes place. As a result, new distorted
sigmoidal and new closed curve solutions appear. Since RS
solutions with R ¼ q cannot exist for T 6¼ T0, this is
symmetry-breaking bifurcation with respect to symmetry
R ¼ q, and R 6¼ q holds for new solutions.

We performed Monte-Carlo simulations by adopting
various annealing schedules and confirmed that the simu-

lation results agree with theoretical ones, except where RS
solutions coexist and thermodynamic transition temperature
is as low as T ¼ 0:05. In this case, simulation results are
trapped in metastable states frequently. To observe the
thermodynamic transition in simulations, appropriate an-
nealing schedules must be adopted.

Finally, we mention future problems. In the region where
RS solutions coexist, comprehensive studies on the bifurca-
tion of RS solutions and solutions which are AT-stable and
have non-negative entropy and the minimum free energy
are necessary. As for the stability of the freezing 1RSB
solutions, since the relative relation between transition point
�th and �s depends on T0 and T , it is necessary to determine
boundary �th ¼ �s. In particular, relation �th > �s was
observed at Nishimori temperatures T ¼ 0:01, 0.03, and
0.05 in this paper. However, since �th and �s were obtained
numerically and are very close, the result is not definitive,
and the relation must be confirmed. Furthermore, we will
address the problems of AT-stability and the definition and
evaluation of bit-error rate for 1RSB solutions.
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10) S. Verdú: Multiuser Detection (Cambridge University Press, Cam-

bridge, 1988).

11) H. Nishimori: Statistical Physics of Spin Glasses and Information

Processing: An Introduction (Oxford University Press, Oxford, 2001).

12) N. Sourlas: Nature 339 (1989) 693.

13) Y. Kabashima and D. Saad: Europhys. Lett. 45 (1999) 97.

14) J. R. L. de Almeida and D. J. Thouless: J. Phys. A 11 (1978) 983.
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