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Griniasty et al. introduced an attractor neural network of the temporal cortex based on the correlation-
type associative memory model. In this model, there are parameter regions where the Hopfield attractor
and the correlated attractor coexist. We study a method of distinguishing these two attractors. For this
purpose, we examine the relaxations of neural firing rate fluctuations. In other words, we introduce
sublattices and calculate the correlations of firing rate fluctuations in the sublattices using a statistical
mechanical method and Monte Carlo simulations. As a result, we found that the relaxation time for the
correlated attractor is longer than that for the Hopfield attractor. Therefore, two bistable attractors can be
distinguished by observing relaxation times.
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1. Introduction

In recent years, it has become possible to measure not
only the average firing rates of neural spikes, but also higher
order statistical quantities such as fluctuations around the
average firing rate. It is expected that this experimental
progress will have a great influence on the study of neural
networks. However, there are few studies that have
examined the structure and the dynamical states of neural
networks in brains by observing higher order statistical
quantities.1,2) In this paper, using one of these higher order
statistical quantities, i.e., correlation functions, we show
that it is possible to distinguish coexistent attractors of a
recurrent neural network.

In principle, it is practically impossible to uniquely
determine the structure and dynamical states of a neural
network using only the statistical quantities of neural spikes.
However, frequently the candidates of a structure and the
dynamical states are reduced to only a small number from
anatomical, physiological and theoretical knowledge ob-
tained previously. In such cases, there is a possibility that
several models or states are distinguished by observing
higher order statistical quantities.

In this paper, in order to look into this possibility, we
study an attractor neural network model of the temporal
cortex that was proposed by Griniasty et al. in Amit’s group.
In order to explain the characteristics of the neural firing
rates in the temporal cortexes of monkeys that were
observed while the monkeys were performing a delay
sample matching task,3,4) Griniasty et al. proposed the Amit

model, an extension of the Hopfield model5,6) that is the
correlation-type associative memory model.7,8)

In the Amit model, cross-correlation-type learning be-
tween two adjacent patterns is used together with ordinary
auto-correlation-type learning. Thus, in this model, the
notion of neighbors is introduced in the set of stored
patterns. In this model, if the strength of the cross-
correlation-type learning is weak, any stored pattern be-
comes an attractor as in the Hopfield model. This attractor is
called a Hopfield attractor. On the other hand, if the strength
of the cross-correlation-type learning exceeds a certain level,
the firing pattern of the system becomes a mixture of the
stored pattern and its adjacent patterns. Thus, diffusion takes
place in the space of the stored patterns. This diffusion does
not spread over an infinitely long range but stops at a finite
range, and the distribution of overlaps between the stored
pattern and adjacent patterns becomes a Gaussian like
distribution. For each stored pattern, there corresponds an
equilibrium state whose central pattern is the stored pattern.
Thus, an equilibrium state of this type has correlations with
other equilibrium states of the same type. The longer the
distance between the central patterns of the equilibrium
states, the smaller the correlation among them. Griniasty
et al. called this type of the equilibrium state the correlated
attractor.

Uezu et al. showed that the correlated attractor does not
appear through the instability of the Hopfield attractor as the
temperature changes, but exists when the Hopfield attractor
is stable in some temperature region. Thus, in this model two
attractors can coexist. Furthermore, Uezu et al. found that
the system converges to a different attractor depending on
initial condition in the coexistent region.9,10)�E-mail: uezu@cc.nara-wu.ac.jp
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In this paper, we study the Amit model and investigate
whether two attractors can be distinguished using relaxation
times of the correlation functions of the firing rate fluctua-
tions. The relaxation times of the correlation functions are
related to the second partial derivatives of free energy. Since
the attractor corresponds to the minimal value of the free
energy, this means that attractors can be characterized by
observing the fluctuations of the firing states after the system
reaches equilibrium. We show that the relaxation time of the
correlation functions for the correlated attractor is longer
than that for the Hopfield attractor. Therefore, we can
distinguish between two attractors by observing the relax-
ation times.

In the next section, we explain the present model. In §3
and §4, theoretical results and numerical results are
presented, respectively. A summary and discussion are
given in §5.

2. Model

In this section, we explain the Amit model7) and
summarize the previous results for the equilibrium states.9)

The instantaneous state of each neuron is expressed by si,
which takes �1, where i labels the neuron (i ¼ 1; 2; . . . ;N).
The time evolution of si in the deterministic case is given by

siðt þ 1Þ ¼ sgnðhiðtÞÞ; ð1Þ

where hi is defined by

hiðtÞ ¼
X
jð6¼iÞ

JijsjðtÞ; ð2Þ

and Jij is the strength of the synaptic connection from the
j-th neuron to the i-th neuron. We adopt asynchronous
dynamics. In this paper, we consider the stochastic time
evolution and introduce T , which is the noise level. We call
T a ‘‘temperature’’. Then, the probability that siðt þ 1Þ takes
�1 is given by

Prob½siðt þ 1Þ ¼ �1� ¼
1� tanhð�hiðtÞÞ

2
; ð3Þ

where � ¼ 1=T . Also, in this case we adopt asynchronous
dynamics. In the Amit model, the synaptic weight Jij is
defined as

Jij ¼
1

N

Xp
�¼1

��i ð�
�
j þ að���1

j þ ��þ1
j ÞÞ

¼
1

N

X
�;�0

��i D��0�
�0

j ðfor i 6¼ jÞ; ð4Þ

Jii ¼ 0 ð�0i ¼ �
�
i ; �

pþ1
i ¼ �1i Þ;

where ��i represents the value of i-th neuron for the �-th
pattern �� � f��1 ; �

�
2 ; . . . ; �

�
Ng and it takes value þ1 or �1

according to the following probability

Prob½��i ¼ �1� ¼
1

2
: ð5Þ

The parameter p refers to the total number of patterns. D is a
p� p matrix defined as

D � fD��g ¼

1 a 0 � � � � � � 0 a

a 1 a 0 � � � � � � 0

0 a 1 a 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 a 1 a 0

0 � � � � � � 0 a 1 a

a 0 � � � � � � 0 a 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð6Þ

The equilibrium state is described by the canonical distri-
bution with the following Hamiltonian.

H ¼ �
1

2

X
i; j

Jijsisj ¼ �
1

2N

X
i 6¼j

X
�;�0

��i D��0�
�0

j sisj: ð7Þ

The overlap m� between �-th pattern �� and a state of
neurons s ¼ ðs1; s2; . . . ; sNÞ is defined as

m�ðtÞ ¼
1

N

XN
i¼1

��i siðtÞ ð� ¼ 1; 2; . . . ; pÞ: ð8Þ

The free energy per neuron is

f ¼ �
1

�N
ln Z; Z ¼ Trs exp½��H�;

where

Trs �
X
fsig
�
X
s1¼�1

X
s2¼�1

� � �
X

sN¼�1

:

For p	 N, f is obtained using the saddle point method and
is expressed as

f ¼
�

2

X
�;�0

m�D��0m
�0

� ln 2 cosh �
X
�;�0

m�D��0�
�0

 ! !* +* +
�

:

ð9Þ

The saddle point equation becomes

m� ¼ �� tanh �
X
�;�0
��D��0m

�0

 !* +* +
�

: ð10Þ

Here, hh� � �ii� is the average over � ¼ f�1; �2; . . . ; �pg. The
correlated attractor has the following symmetry m2 ¼ m13;
m3 ¼ m12; . . ., and m7 ¼ m8 when m1 is the largest value
among m’s. In the left panel of Fig. 1, we display the
solutions of eq. (10). As seen from the figure, the Hopfield
attractor and the correlated attractor coexist for 0 
 T 
 0:1.
In the right panel of Fig. 1, the free energy of each attractor
is displayed.

3. Theory

In this section, we derive the time evolution equations of
the correlation functions, and the equations for the correla-
tion functions in the equilibrium. We assume that the
number of neurons N is very large, and the number of
patterns is much smaller than N, i.e., N � 1 and p=N 	 1.

First, we study the retrieval dynamics. The input signal to
the i-th neuron hiðtÞ is

hiðtÞ ¼
X
j6¼i

JijsjðtÞ ’
X
�;�0

��i D��0m
�0 ðtÞ: ð11Þ

We adopt asynchronous dynamics, and assume that the
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transition probability wkðsÞ from s ¼ ðs1; . . . ; sk; . . . ; sNÞ to
Fks ¼ ðs1; . . . ;�sk; . . . ; sNÞ takes the following form:

wkðsÞ ¼
1� sk tanhð�hkðsÞÞ

2
; ð12Þ

where Fk is the flip operator of the k-th neuron. The
probability distribution PtðsÞ of the state s at time t obeys the
following master equation:11,12)

d

dt
PtðsÞ ¼

XN
k¼1

fwkðFksÞPtðFksÞ � wkðsÞPtðsÞg: ð13Þ

Then, the time evolution of overlap m� is given by

d

dt
hm�i ¼ �hm�i þ �� tanh �

X
�;�0
��D��0m

�0

 !* +* +
�

; ð14Þ

where h� � �i denotes the average over PtðsÞ. From eq. (14),
we obtain the equation for hm�i at the steady state

hm�i ¼ �� tanh �
X
�;�0
��D��0 hm�

0
i

 !* +* +
�

: ð15Þ

Since eq. (15) is the same as eq. (10), the steady state
corresponds to the equilibrium state as it should.

Next, we calculate the correlation functions.1) Let �siðtÞ be
the fluctuation around the equilibrium value at time t,
�siðtÞ � sðtÞ � hsii. The correlation function of fluctuations
of the i-th neuron at time t and the j-th neuron at time t þ �
is defined as

Cijðt; t þ �Þ � h�siðtÞ�sjðt þ �Þi: ð16Þ

Then, we obtain the time evolution equations for the
correlation functions as

d

dt
Cijðt; tÞ ¼

d

dt
h�siðtÞ�sjðtÞi

¼ �2Cijðt; tÞ þ h�siðtÞ� tanhð�hjðtÞÞi
þ h�sjðtÞ� tanhð�hiðtÞÞi ði 6¼ jÞ ð17Þ

d

d�
Cijðt; t þ �Þ ¼

d

d�
h�siðtÞ�sjðt þ �Þi

¼ �Cijðt; t þ �Þ þ h�siðtÞ� tanhð�hjðt þ �ÞÞ
ðfor any i; jÞ: ð18Þ

The correlation function at the equilibrium is defined as

Cijð�Þ � lim
t!1

Cijðt; t þ �Þ: ð19Þ

We also study the correlation functions in the equilibrium
state. From the definition, Ciið0Þ is obtained as

Ciið0Þ ¼ hð�siÞ2i ¼ 1� hsii2: ð20Þ

Thus, this is the quantity of order N0. The order of Jij is N�1.
Now, we assume Cij is the order of N�1 for i 6¼ j. Then,
we obtain the equation of Cijð0Þ for i 6¼ j by taking the limit
t!1 in eq. (17).

2Cijð0Þ ¼
X
k

~JJjkCikð0Þ þ
X
k

~JJikCjkð0Þ ði 6¼ jÞ; ð21Þ

where

~JJik � lim
t!1

� cosh�2ð�hhiðtÞiÞJik:

Furthermore, the time evolution equation of Cijð�Þ for any i

and j is obtained by taking the limit t!1 in eq. (18)

d

d�
Cijð�Þ ¼ �Cijð�Þ þ

X
k

~JJjkCikð�Þ: ð22Þ

Therefore, Ciið�Þ is expressed as

Ciið�Þ ¼ ð1� hsii2Þe��: ð23Þ

The number of the correlation functions Cijð�Þ is N2. Thus,
if N is very large, it is difficult to calculate all Cij and their
relaxation times. On the other hand, we can calculate
correlation functions of the overlaps m� and their relaxation
times. However, in order to calculate the correlation
functions for the overlaps, we need information about stored
patterns. In experiments, we do not have such information.
Therefore, in order to avoid using information about stored
patterns and to reduce the dimension of the relevant
correlation matrix, we introduce sublattices and calculate
the correlation functions of the firing rate fluctuations in the
sublattices.

Now, let us define the sublattices. According to the value
of �1i ; �

2
i ; . . . ; �

p
i , each neuron i is classified into 2p

sublattices. We denote these sublattices by �1; . . . ;�2 p .
The l-th sublattice �l is characterized by the p set of values
�1
l ; . . . ; �

p
l , and the value ��i at any neuron i in this sublattice

takes the common value ��l for all � ¼ 1; . . . ; p. In the
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Fig. 1. Left panel: Equilibrium states [eq. (10)]. a ¼ 0:4 and p ¼ 13. The abscissa is T and the ordinate is m� ð� ¼ 1; . . . ; pÞ. Solid curve:

Hopfield attractor (HA) ½m1 ’ 1;m� ’ 0 ð� ¼ 2; . . . ; pÞ�, dashed curves: correlated attractor (CA), dotted curve: mixed state of thirteen patterns (13M).

Right panel: Results of numerical calculation for the free energy [eq. (9)]. The abscissa is T and the ordinate is f . Line types are same as those in the

left panel.
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equilibrium, the neurons that belong to the same sublattice
�l have the same input signal

hi ¼
X
�;�

��i D��m
� ¼

X
�;�

��l D��m
�: ð24Þ

Therefore, the transition probability [eq. (12)] is the same
for the neurons in the same sublattice. Next, we define the
firing rate mðlÞ in the sublattice �l and its fluctuation as
follows:

mðlÞðtÞ ¼
1

j�lj

X
i2�l

siðtÞ; ð25Þ

�mðlÞðtÞ ¼ mðlÞðtÞ � hmðlÞi; ð26Þ
where j�lj is the number of the elements in �l. The
correlation function of the firing rate fluctuations in
sublattices �l1 and �l2 is defined as

Ll1l2 ð�Þ � lim
t!1
h�mðl1ÞðtÞ�mðl2Þðt þ �Þi

¼
1

j�l1 jj�l2 j

X
i2�l1

X
j2�l2

Cijð�Þ:
ð27Þ

From eq. (21), we obtain the equation for Ll1l2 ð0Þ as

Ll1l2 ð0Þ ¼
1

2

X2 p

l¼1

ðAl l2Ll1lð0Þ þ Al l1Ll2lð0ÞÞ þ
2p

N
Bl1�l1;l2 : ð28Þ

Furthermore, from eq. (22), we obtain the time evolution
equation for Ll1l2ð�Þ as

d

d�
Ll1l2 ð�Þ ¼ �

X
l

ðEl2l � Al2lÞLl1lð�Þ: ð29Þ

Here, E is a 2p � 2p unit matrix and A and B are defined as

Al1l2 ¼
�

2p
Bl1�l1l2 ; Bl ¼ cosh�2 �

X
�;�0
��l D��0 hm

�0 i
� �

; ð30Þ

where

�l1l2 �
X
��0

��l1D��0�
�0

l2
:

By defining ðLl1Þl2 ¼ Ll1l2 , eq. (29) becomes

d

d�
Ll1 ð�Þ ¼ �ðE � AÞLl1 ð�Þ: ð31Þ

Let 	i be the eigenvalue of A and ei be the eigenvector
belonging to 	i. We expand Ll1 ð0Þ by feig.

Ll1 ð0Þ ¼
X2 p

i¼1

aðl1Þi ei: ð32Þ

Then, the solution for eq. (31) is expressed as

Ll1 ð�Þ ¼
X2 p

i¼1

aðl1Þi exp½�ð1� 	iÞ��ei: ð33Þ

Since the matrix A depends on the overlap fm�g, the matrix
A differs from one attractor to another. From eq. (9), we
calculate the curvature of the free energy and obtain

@2 f

@mðl1Þ@mðl2Þ
¼

�

22p
� E � Að Þf gl1l2 : ð34Þ

From eq. (33), we note that the eigenvalues of E � A

characterize the relaxation of Ll1l2 ð�Þ. On the other hand,
from eq. (34), we note that the second partial derivatives of
the free energy are obtained from E � A by operating �.

Thus, the relaxation times of the correlation functions are
related to the curvatures of the free energy. Since the
curvatures of the free energy depend on attractors, we expect
that coexistent attractors can be distinguished by observing
the relaxation times of the correlation functions.

4. Numerical Calculation

In this section, we compare the theoretical results with
numerical results using Monte Carlo simulations (MCS) for
asynchronous dynamics. First, we briefly describe parame-
ters and the calculation method.

The parameters are fixed to the following values. The
number of neurons is N ¼ 50000 or 100000, the number
of patterns is p ¼ 13 and the strength of the synaptic
connection between neighboring patterns is a ¼ 0:4. As for
the temperature, we adopted T ¼ 0:03, 0.05, and 0.08.

An initial state of neurons is created according to the
following probability

Prob½si ¼ �1� ¼
1� m0�

1
i

2
: ð35Þ

Thus, the initial condition of the �-th overlap is

m�ð0Þ ¼ m0��;1; � ¼ 1; . . . ; p: ð36Þ

As shown in Fig. 2, the system converges to different
attractors depending on the values of m0. If we put m0 ¼ 0:5,
the system goes to the Hopfield attractor (the upper curve of
Fig. 2), whereas if we put m0 ¼ 0:1, the system goes to the
correlated attractor (the lower curve of Fig. 2). Using these
values of m0, we obtain two different attractors. We measure
the relaxation time of the correlation function in each
attractor. The correlation function is expressed by the sum
of the exponential functions as in eq. (33). We denote
the relaxation times of the correlation function at the
Hopfield attractor and at the correlated attractor �h and
�c, respectively. Assuming Cijð�Þ / exp½��=�h� or Cijð�Þ /
exp½��=�c�, we determine �h or �c from lnCijð�Þ using
the least squares method. Next, we give the numerical
results.

0

0.2

0.4

0.6

0.8

1

 0  2  4  6  8  10

HA-MS
CA-MS
HA-TH
CA-TH

t[mcs]

m1

Fig. 2. The relaxation process to the equilibrium (the time evolution

of m1). The parameters are a ¼ 0:4, T ¼ 0:05 and p ¼ 13. The abscissa

is time t in the unit of the Monte Carlo step (mcs) and the ordinate is m1.

‘‘-TH’’ denotes the result obtained by the Runge Kutta method (RK) of

eq. (14) and ‘‘-MS’’ the result obtained by the Monte Carlo simulations

(N ¼ 50000). ‘‘HA’’ denotes the Hopfield attractor and ‘‘CA’’ the

correlated attractor.
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4.1 Ll1l2 ð0Þ
By solving eq. (28) numerically, we get values of Ll1l2 ð0Þ.

To check whether the results of the MCS are reliable, we
compare the MCS results with the theoretical ones. We
choose sublattices in which the value of the correlation
function Ll1l2 ð0Þ is large and the transition probability is
high, that is where j�hij is small, so that we can easily
observe the relaxation processes.

The results are shown in Table I. The cross-correlation
functions for the same sublattice calculated theoretically and
using the MCS are the order of 10�4 at the Hopfield attractor
and the order of 10�2 at the correlated attractor, respectively.
The cross-correlation functions for the different sublattices
calculated theoretically and using the MCS at the correlated
attractor are the order of 10�3. The slight discrepancies
between the theoretical results and the results using the MCS
are due to the fact that eq. (28) is derived for the leading
order of N, whereas the MCS is performed for finite N and
includes all orders of N. Therefore, we consider the results
achieved using the MCS are reliable. In these cases, the
magnitude of correlation functions is large enough to
observe the relaxation processes. On the other hand, the
cross-correlation functions for the different sublattices
calculated theoretically and using the MCS at the Hopfield
attractor are the order of 10�9 and these values are the same
order of numerical errors. In this case, it is difficult to
observe the relaxation processes, and therefore, in order to
obtain the relaxation times, we use only the theoretical
results.

4.2 Relaxation time
We adopted L2822;2822 as the cross-correlation function for

the same sublattice and L2822;2838 as the cross-correlation
function for the different sublattices. Here, the sublattices
l ¼ 2822 and l ¼ 2838 correspond to the following value
sets of ð�1; �2; . . . ; �13Þ, ð1;�1; 1;�1;�1;�1;�1;�1; 1; 1;
�1; 1;�1Þ and ð1;�1; 1;�1; 1;�1;�1;�1; 1; 1;�1; 1;�1Þ,
respectively. Only the values of �5 are different in these
sublattices.

First, we give the results of the cross-correlation function
for the same sublattice L2822;2822. In Fig. 3, we display the

results for the Hopfield attractor (left panels) and for the
correlated attractor (right panels) for T ¼ 0:05. The upper
panels are drawn for the correlation functions and the
lower panels are for the natural logarithm of the correlation
functions. In these panels, bMS denotes the slope of
ln L2822;2822 estimated from the MCS results using the least
squares method for � ¼ 0{4. bTH denotes the slope of
ln L2822;2822 calculated from eq. (33) using the least squares
method. That is, bs are 1=�a (a is h or c), which are estimated
assuming that the correlation functions are proportional to
e��=�a . In the Hopfield attractor, bTH is obtained from
data for � ¼ 0{10, and in the correlated attractor, bTH1 is
obtained from the data � ¼ 0{4, bTH2 is for � ¼ 4{8 and
bTH3 is for � ¼ 8{12.

First, we examine the results of the Hopfield attractor.
Since the eigenvalues of the matrix A are 	i ’ 0, we
expect the relaxation time to be �h ’ 1. Using the theoretical
results for � ¼ 0{10, we found �h ¼ 1=bTH ¼ 1:0001� 2�
10�8 � 1. On the other hand, for the MCS, we found �h ¼
1=bMS ¼ 0:85� 0:01 and this value is less than 1. We also
obtained similar results for other sublattices.

Next, we examine the correlated attractor. Since the
correlation function is theoretically expressed as Ll1l2 ð�Þ ¼P2 p

i¼1 a
ðl1Þ
i exp½�ð1� 	iÞ��ðeiÞl2 [eq. (33)], its relaxation time

seems to be characterized by the largest value of the
eigenvalues 	i of the matrix A. For l ¼ 2822, the largest
eigenvalue is 	i ’ 0:48. If this mode had large contribution
to the relaxation process, the relaxation time would be
�ðmaxÞ
c ¼ 1=ð1� 0:48Þ ’ 1:92. However, we obtained faster

relaxation than we expected, that is, �c ¼ 1=bMS ¼ 1:036�
0:002 using the MCS and �c ¼ 1=bTH1 ¼ 1:055� 0:001

using the theoretical calculation. In order to clarify the
reason, we calculated the relaxation modes. Among the
2p modes of the relaxation in the correlated attractor, 13
modes had relaxation times �i longer than 1 and had slower
relaxation than the Hopfield attractor. See Fig. 4. Further-
more, five modes have relaxation times that are longer than
1.3. Other modes had �i � 1. Moreover, the coefficient aðl1Þi

of the slowest mode was the order of 10�4, while the largest
coefficient of fast modes was the order of 10�3. Thus, when
the time lag of the correlation function is small (� ¼ 0{4),
since the contributions of fast modes are large, the relaxation
time becomes shorter than we expected. Even in this
situation, the relaxation time of the correlated attractor
is longer than that of the Hopfield attractor because the
correlated attractor contains modes with longer relaxation
times than 1. On the other hand, the theoretically estimated
relaxation time tends to �ðmaxÞ

c as we estimate it for a
later time period. (�TH2 ¼ 1=bTH2 ¼ 1:222� 0:004, �TH3 ¼
1=bTH3 ¼ 1:539� 0:004).

Furthermore, we calculated the relaxation at different
temperatures. In the correlated attractor, the result of the
MCS at T ¼ 0:08 is �c ¼ 1:11� 0:02 and that at T ¼ 0:03 is
�c ¼ 1:01� 0:01. On the other hand, in the Hopfield
attractor, the results of the MCS at T ¼ 0:08 and T ¼ 0:03

are �h ’ 1. This indicates that when the temperature is
increased, the difference in the relaxation times between two
attractors becomes large.

Next, we give the results of the cross-correlation function
for the different sublattices L2822;2838 for T ¼ 0:05. As in
Fig. 3, we display the results for the Hopfield attractor (left

Table I. A comparison of the values of several correlation functions at

� ¼ 0 between the theory and the Monte Carlo simulations. a ¼ 0:4 and

T ¼ 0:05. In the table, HA denotes the Hopfield attractor and CA the

correlated attractor. MS denotes the Monte Carlo simulations and TH the

theory, i.e., the solution in eq. (28).

HA

MS TH

L2822;2822ð0Þ 0:159� 10�3 0:110� 10�3

L2822;2566ð0Þ �10�9 �10�9

L2822;2838ð0Þ �10�9 �10�9

L2822;2886ð0Þ �10�9 �10�9

CA

MS TH

L2822;2822ð0Þ 0:322� 10�1 0:579� 10�1

L2822;2566ð0Þ 0:494� 10�2 0:132� 10�2

L2822;2838ð0Þ 0:119� 10�2 0:161� 10�2

L2822;2886ð0Þ 0:732� 10�2 0:114� 10�2
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panels) and for the correlated attractor (right panels) for T ¼
0:05 in Fig. 5. As for the Hopfield attractor, the relaxation
time was theoretically estimated to be �h ¼ 1=bTH ¼ 0:97�
5:0� 10�5, but it could not be estimated using the MCS
because the magnitude of L2822;2838ð0Þ is the order of 10�9

and is the same order of numerical errors. In term of the
correlated attractor, the relaxation time was estimated to be

�c ¼ 1=bTH1 ¼ 1:94� 0:01 theoretically and �c ¼ 1=bMS ¼
2:2� 0:1 using the MCS. Thus, the relaxation time of the
cross-correlation function of the correlated attractor is nearly
equal to �ðmaxÞ

c . From these results, we conclude that �h � 1

and �c � 2 and the difference between �h and �c is very large
in the cross-correlation function for the different sublattices.

5. Summary and Discussion

We have studied a method of distinguishing coexistent
attractors by observing the correlation functions in a
recurrent-type neural network model called the Amit model.

The Amit model has a parameter region where the
Hopfield attractor and the correlated attractor coexist. Since
the difference in the curvatures of the free energy between
two attractors is considered to reflect the relaxation of the
correlation functions, we expected that different types of
attractors could be distinguished by observing the relaxation
times of the correlation functions.

In order to calculate the correlation functions for the
overlaps, we need information about stored patterns. During
experiments, we do not have such information. On the other
hand, theoretical calculations of the correlation functions
and relaxation times for neurons are impossible when
the number of neurons N becomes of the order of 104.
Therefore, in order to avoid using stored pattern information
and to reduce the dimensions of the relevant correlation
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matrix, we introduced a 2p set of sublattices and used the
correlation functions of the fluctuations of firing rates in
the sublattices. We investigated the correlation functions of
bistable attractors and calculated the relaxation times of
these correlation functions theoretically and using the MCS.

Theoretically, the relaxation time of correlation functions
is characterized by the largest relaxation time �ðmaxÞ among
�i ¼ 1=ð1� 	iÞ, which is the relaxation time of the i-th
mode. The distribution of relaxation times is nearly equal to
the delta function �ð� � 1Þ in the Hopfield attractor, whereas
in the correlated attractor, there are several �i larger than 1.
Thus, we expected that the relaxation of the correlated
attractor would be longer than that of the Hopfield attractor.
In order to investigate whether this was true or not, we
calculated the cross-correlation function for the same
sublattice L2822;2822 at T ¼ 0:03, 0.05, and 0.08, and the
cross-correlation function for the different sublattices
L2822;2838 at T ¼ 0:05, by fixing a ¼ 0:4 and p ¼ 13. The
sublattices l ¼ 2822 and l ¼ 2838 were chosen because the
magnitude of the correlation functions was large enough to
observe the relaxation process.

First, we summarize the results for L2822;2822 at T ¼ 0:05.
In the Hopfield attractor, we obtained �h � 1 theoretically

and �h ¼ 0:85� 0:01 using the MCS, whereas in the
correlated attractor we obtained �c ¼ 1:055� 0:001 theo-

retically and �c ¼ 1:036� 0:002 with MCS. The relaxation
time in the correlated attractor was shorter than �ðmaxÞ

c . The
reason for this is considered to be that the number of the
modes whose relaxation times are larger than 1 was about 10
in 2p and their coefficients are one order smaller than those
of the faster modes. However, since there are slower
relaxation modes that do not exist in the Hopfield attractor,
a longer relaxation time was observed in the correlated
attractor than in the Hopfield attractor. Thus, the two
attractors can be distinguished by the relaxation times.

The above analysis was performed at T ¼ 0:05. Since the
relative difference in the relaxation time between the
Hopfield attractor and the correlated attractor is ð�c � �hÞ=
�c � 0:05, which is not large, there is a possibility that two
attractors cannot be distinguished under some external noise.
However, the relative difference becomes larger as T is
increased. In fact, we obtained the relaxation times in the
correlated attractor using the MCS as �c ¼ 1:11� 0:02 at
T ¼ 0:08 and �c ¼ 1:01� 0:01 at T ¼ 0:03. In this model,
since the temperature range for two attractors to coexist is
small, i.e., 0 
 T 
 0:1 for a ¼ 0:4 and p ¼ 13, the relative
difference in the relaxation times of two attractors is at most
10%. We think that there are parameter regions where the
relative difference is bigger and where two attractors are
distinguished easily. We think the reason that the relaxation
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time increases as temperature does in the correlated attractor
is that the curvatures of the free energy become smaller for
the larger temperatures.

Next, let us summarize the results for the cross-correlation
function L2822;2838 at T ¼ 0:05.

The relaxation time of the Hopfield attractor was
estimated as �h � 1 theoretically, but it was difficult to
estimate it with the MCS because the magnitude of the
correlation function is the same order of the numerical
errors. On the other hand, the relaxation time of the
correlated attractor was estimated as �c ¼ 1:94� 0:01

theoretically and as �c ¼ 2:2� 0:1 using the MCS. It turned
out that the difference between �h and �c was very large. In
this case, the relaxation time is characterized by the largest
�i, �

ðmaxÞ
c in Fig. 4. We consider the reason the relaxation in

the cross-correlation function for the different sublattices of
the correlated attractor is characterized by �ðmaxÞ

c is that the
auto-correlation function Ciið�Þ, whose relaxation time is 1
and whose order is 1, is not included in the cross-correlation
function for the different sublattices.

In conclusion, in the Amit model, two coexistent
attractors can be distinguished using the relaxation of the
correlation functions of fluctuations around the averaged

firing rates in the sublattices. In particular, it turned out that
there existed a striking difference of relaxation times of the
cross-correlation function for the different sublattices be-
tween two attractors. Since the cross-correlation function
Cijð�Þ between two neurons in the different sublattices
is expected to behave similarly to the cross-correlation
function between the corresponding sublattices, we believe
that it is possible to distinguish two attractors by observing
Cijð�Þ experimentally.
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