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We study a phase unwrapping model in the one-dimensional space on the basis of

Bayesian inference using the maximizer of posterior marginals (MPM) estimate by the

statistical mechanical methods. We propose a model in which the recursion relations

to obtain statistical quantities such as MPM estimates are derived. We introduce the

three state Potts model to handle the discontinuities in observed data, and propose

two methods, the step and direct methods. We derive the recursion relations for MPM

estimates of hyperparameters and phase differences in both methods, and investigate

the random and regular phase differences, and previously studied other type of random

phase differences. We find that the phase differences are inferred fairly well in rather

wide ranges of noise amplitudes. The ranges depend on samples and the system sizes.

Furthermore, we find that the step method has performance in phase unwrapping com-

parable to the direct method, and that it is much faster in numerical computation and

applicable to much larger system sizes than the direct method.
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1. Introduction

Phase unwrapping1) is a technique to infer true phases from corrupted and re-

duced phases. We give one example of one-dimensional phase unwrapping. That is the

vestibulo-ocular reflex (VOR) of vertebrate animals, which is the eye movement system

that stabilizes the field of view. When the head rotates to one direction, the eyes ro-

tate to the opposite direction to retain the field of view. From experimentally observed

rotation velocity of the head fi(t) and the eye movement velocity fo(t), their Fourier

transformations f̂i(ω) and f̂o(ω) are calculated. From f̂o(ω)

f̂i(ω)
= a(ω) + ib(ω), the gain

√

a(ω)2 + b(ω)2 and the phase φ(ω) = tan−1( b(ω)
a(ω)

) are obtained. φ(ω) represents the

phase shift between both velocities and has important information on eye movement

response to head movement at each frequency. Since φ(ω) is reduced to the value in

the interval [−π, π), it is necessary to unwrap the phase. It is well known that if there

exists external noise, the phase unwrapping becomes difficult.

Many techniques of phase unwrapping have been proposed from various view-

points.2–11) However, in general two-dimensional models, theoretical treatments are so

difficult that we may not able to confirm simulation results theoretically. It is quite

desirable to introduce a model in which statistical quantities such as the maximizer of

posterior marginals (MPM) estimates are analytically derived.

One-dimensional phase unwrapping models have been investigated from various

viewpoints, such as the non-Gaussian filtering method,12) the maximum a posterior

probability (MAP) or MPM estimations based on the Bayesian inference,8, 13) and so

on. In this paper, we propose a model in which the phase differences are generated from

the correlated Gaussian distribution and external noises are generated from the Gaus-

sian distribution. In our formulation, phase differences are corrupted by external noise

and reduced to [−π, π) during the observation process. We assume that the disconti-

nuities in the reduced data, which we call jumps, are not very big, and introduce the

three state Potts model.11, 14) We propose two methods, the step and direct methods.

In the step method, the corrupted data are inferred from the reduced data in step I,

and the phase differences are inferred from the corrupted data in step II. Hyperparam-

eters are introduced and their priors and likelihood functions are assumed by imposing

continuity of phases and/or phase differences. On the other hand, in the direct method,

we infer the phase differences from the reduced data directly. We derive the recursion

relations for the variables by which the marginal distributions and the MPM estimates
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are calculated by using the so-called transfer matrix (TM) method14) which is also used

in Information science15, 16) etc. and has different names such as the belief propagation

(BP).

We perform numerical calculations in not only the random phase difference but also

in the regular phase differences for small system sizes. Next, we study the large system

sizes by the step method because the direct method is not available. Finally, we study

the case that the phases are generated from correlated Gaussian distributions and suffer

from the external noises generated from the von-Mises distribution studied in Ref. 13.

By regarding the phases in Ref. 13 as the phase differences, we apply the step method

to these phase differences and study the regions where the jump inference succeeds by

comparing with results of the previous study.

The construction of the paper is as follows. In §2, we formulate the direct and step

methods. In §3, we show numerical results for the random and regular phase differences.

§4 contains a summary and discussion of the results. In the Appendices, we derive

some mathematical relations, and describe the outline of the derivation of the marginal

distributions and the MPM estimates for the step and direct methods.

2. Formulation

Let θi be the coordinate at which i-th phase ξi is observed (i = 1, · · · , L). The true

phase difference ismi = ξi+1−ξi (i = 1, · · · , L−1). We definem = {m1, m2, · · · , mL−1}.
We assume that the white Gaussian noise zi with mean 0 and variance σ2

0 is added to

the phase difference mi during observation. Let yi be a corrupted phase difference

yi = mi + zi, i = 1, · · · , L− 1. (1)

Furthermore, we assume that the corrupted phase differences are observed at the middle

point θ̂i between θi and θi+1 and are reduced to values in [−π, π) (i = 1, · · · , L − 1).

Let τi be the reduced phase difference which is defined by

τi = yi mod 2π, τi ∈ [−π, π), i = 1, · · · , L− 1. (2)

Then,

yi = τi + 2πni. (3)

We call ni a jump. Thus, the observable is τ = (τ1, τ2, · · · , τL−1). In order to apply the

Bayesian inference, we assume that phase differences obey some probability distribution.

In this paper, we assume that mi is generated from the following correlated Gaussian
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distribution,

P (m) = C0 exp(−
1

2η20

L
∑

i=1

(mi −mi−1)
2), (4)

C0 =
L−1
∏

l=1

√

λl

2π

1

η0
, (5)

λl = 2(1− cos(
lπ

L
)), l = 1, 2, . . . , L− 1, (6)

where m0 = mL = 0 and η0 > 0. See Appendix A. By the direct method, the phase

differences m are inferred from τ directly, and by the step method, the jumps n =

(n1, n2, · · · , nL−1) are inferred from τ firstly, and thenm are inferred from y = τ+2πn.

We introduce the random variables s = (s1, s2, · · · , sL−1) and x = (x1, x2, · · · , xL−1)

which are used to estimate n and m, respectively. P (x) is given by

P (x) = C exp(− 1

2η2

L
∑

i=1

(xi − xi−1)
2), (7)

C =

L−1
∏

l=1

√

λl

2π

1

η
, (8)

where x0 = xL = 0 and η > 0. Furthermore, we assume that the number of jumps are

not very many, and si takes three values of 0,±1, that is, we study the three state Potts

model.

2.1 Formulation for direct method

Firstly, we explain the direct method. From the prior P (x) and the conditional

probability P (τl|xl), we obtain the posterior distribution P (xl|τ ). See Appendix B.

P (τl|xl) =
1√
2πσ

∞
∑

nl=−∞
exp[− 1

2σ2
(τl + 2πnl − xl)

2], (9)

P (τ |x) =
L−1
∏

l=1

P (τl|xl), (10)

P (xl|τ ) =
1

Zd

∫

dx(l)P (τ |x)P (x)

=
1

Zd
C

(

1√
2πσ

)L−1
[

∏

j<l

√

2π

auj

][

∏

j>l

√

2π

adj

]

∑

n

exp[−1

2
a
(n)
l x2

l + b
(n)
l xl + c

(n)
l ],

(11)

Zd =

∫

dxP (τ |x)P (x), (12)
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dx ≡ dx1dx2 . . . dxL−1,

dx(l) ≡ dx1 . . . . . . dxL−1 (excluding dxl), (13)

∑

n

≡
∞
∑

n1=−∞

∞
∑

n2=−∞
· · ·

∞
∑

nL−1=−∞
. (14)

The derivation of these relations and definitions of adj , a
u
j and their recursion relations

to obtain a
(n)
l , b

(n)
l , c

(n)
l are shown in Appendix C. In the MPM estimates, since the

expression of P (xl|τ ), eq. (11), contains infinitely many terms in the summation, we

restrict the value of ni to three values 0,±1 assuming that jumps are not very big. We

replace
∑

n by the following
∑′

n,

′
∑

n

=
∑

n1=0,±1

∑

n2=0,±1

· · ·
∑

nL−1=0,±1

. (15)

We denote the MPM estimates for ml and nl as m̂l and n̂l, respectively. m̂l is xl which

maximizes
∑′

n exp[−1
2
a
(n)
l x2

l + b
(n)
l xl + c

(n)
l ]. n̂l is determined as the value sl which

minimizes |m̂l − (τl + 2πsl)|.
Hyperparameter inference

The posterior probability for η and σ is given by

P (η, σ|τ) ∝ P (τ |η, σ)P (η, σ). (16)

We assume that we do not have any information on the prior P (η, σ), and put

P (η, σ)=constant. We obtain

P (η, σ|τ ) ∝ P (τ |η, σ) =
∫

dxP (τ |x, σ)P (x|η) = Zd. (17)

Zd is calculated as

Zd = C

(

1√
2πσ

)L−1
[

∏

j<l

√

2π

auj

][

∏

j>l

√

2π

adj

] ′
∑

n

√

2π

a
(n)
l

exp[

(

b
(n)
l

)2

2a
(n)
l

+ c
(n)
l ],

(18)

where l is any integer value from 1 to L − 1. Note that P (τ |x, σ) is normalized since

[
∏L−1

i=1

∫ π

−π
dτi]P (τ |x, σ) = 1. Thus, we only have to maximize Zd. Instead of Zd, we

maximize lnZd with respect to σ and η.

lnZd = −(L− 1) ln(ησ)− 1

2

∑

j<l

ln auj −
1

2

∑

j>l

ln adj
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+ ln

( ′
∑

n

1
√

a
(n)
i

exp[

(

b
(n)
l

)2

2a
(n)
l

+ c
(n)
l ]

)

+ constant. (19)

2.2 Formulation for step method

2.2.1 Step I

We infer the jumps n. We set the prior of si as

P (s) ∝ e−h
∑L−1

i=1 |si|p. (20)

For any positive integer p, |si|p = |si| since si = 0,±1. We put p = 2 in this paper.

The jump is more difficult to take place for h > 0, and is easier to do for h < 0. The

likelihood function P (τ |s) is assumed to be

P (τ |s) ∝ e−H(τ ,s), (21)

H(τ , s) ≡ 1

2η̃2

L
∑

i=1

(

τi + 2πsi − (τi−1 + 2πsi−1)

)2

, (22)

where τ0 = τL = 0, s0 = sL = 0. That is, we assume that phase differences change

continuously. By the Bayesian formula, we obtain

P (s|τ ) ∝ P (τ |s)P (s) ∝ e−HI(s,τ ), (23)

HI(s, τ ) ≡ H(τ , s) + h
L−1
∑

i=1

s2i

=
1

2η̃2

L
∑

i=1

(

τi + 2πsi − (τi−1 + 2πsi−1)

)2

+ h

L−1
∑

i=1

s2i . (24)

In order to estimate ni and yi, we adopt the MPM inference. Let Pi(si) be the marginal

distribution of si. Since si takes values 0, and ±1, we obtain

Pi(0) = 1− 〈s2i 〉, Pi(1) = (〈s2i 〉+ 〈si〉)/2, Pi(−1) = (〈s2i 〉 − 〈si〉)/2. (25)

Thus, the MPM estimate n̂i for ni is the argument which gives the maximum among

Pi(0), Pi(1) and Pi(−1). We derive analytic formulae for 〈si〉 and 〈s2i 〉 by using the TM

method. See Appendix D.

Hyperparameter inference

Let us denote the summation of sl = 0,±1 as Trl. We obtain

P (h, η̃|τ ) ∝ P (τ |h, η̃) = [

L−1
∏

l=1

Trl]P (τ , s|h, η̃) ∝ [

L−1
∏

l=1

Trl]e
−HI = ZI. (26)
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Since P (τ |h, η̃) should be normalized, it is necessary to calculate [
∏L−1

l=1

∫ π

−π
dτl]ZI.

[
L−1
∏

l=1

∫ π

−π

dτl]ZI

= [

L−1
∏

l=1

∫ π

−π

dτl][

L−1
∏

i=1

Tri] exp[−h

L−1
∑

i=1

|si|p −
1

2η̃2

L
∑

i=1

(

τi + 2πsi − (τi−1 + 2πsi−1)

)2

].

This is easily calculated numerically by the TM method. We maximize lnZ with respect

to h and η̃ to obtain the hyperparameters.

2.2.2 Step II

We infer the estimate ŷi for the corrupted phase difference yi by using the MPM

estimate of the jump n̂i, that is, ŷi = τi +2πn̂i. Below, we denote ŷ by y for simplicity.

We proceed to estimate m from y. The conditional probability P (y|x) is assumed

to be the uncorrelated Gaussian distribution the same as P (y|m) with the standard

deviation σ instead of σ0.

P (y|x) =
L−1
∏

i=1

1√
2πσ

e−
(yi−xi)

2

2σ2 . (27)

From the Bayesian formula, we have

P (x|y) ∝ P (y|x)P (x) = CII
1

(
√
2πσ)L−1

e−HII, (28)

ZII =

∫

dxe−HII, (29)

HII =
1

2σ2

L−1
∑

i=1

(xi − yi)
2 +

1

2η2

L
∑

i=1

(xi − xi−1)
2. (30)

Let us consider the method to estimate mi from y by the MPM inference. Since the

marginal distribution Pi(xi) for xi is the Gaussian distribution, the maximum of Pi(xi)

is attained at the average value 〈xi〉. Thus, the MPM estimate m̂i is 〈xi〉. We use the

TM method to derive the formula for 〈xi〉. See Appendix E.

Hyperparameter inference

P (η, σ|y) ∝ P (y|η, σ) = CII
1

(
√
2πσ)L−1

∫

dxe−HII = CII
1

(
√
2πσ)L−1

ZII.

(31)
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Since P (y|η, σ) is normalized, we maximize I ≡ CII
1

(
√
2πσ)L−1ZII with respect to η and

σ. Instead, we maximize ln I.

ln I = −(L− 1) ln(ησ) + lnZII + constant. (32)

3. Numerical results

3.1 Random phase differences

We generate phase differences and corrupted phase differences for η0, σ0 =

0.1, 0.2, · · · , 2.0. For the hyperparameter inference, we scan h = −10.0,−9.9, · · · , 10.0
with ∆h = 0.1, or h = −0.1,−0.099, · · · , 0.1 with ∆h = 0.001, and η̃ = 0.1, 0.2, · · · , 2.0
for step I, and η, σ = 0.1, 0.2, · · · , 2.0 for step II and the direct method. We decide the

optimal parameters which maximize the likelihood functions. We also use the gradient

method, and find that both methods give almost the same optimal parameters and

the MPM estimates. We generate two types A and B of phase differences and external

noises. For type A, we generate {m1
l } from the correlated Gaussian distribution (eq.

(4)) with η0 = 1 and {z1l } with the Gaussian distribution with mean 0 and standard

deviation 1. Then, we set ml = η0m
1
l and zl = σ0z

1
l . We generate only one sample. For

type B, we generate {ml} for each η0 from the correlated Gaussian distribution (eq.

(4)) with η0. For {zl}, we generate {z1l } with the Gaussian distribution with mean 0

and standard deviation 1 for each sample, and set zl = σ0z
1
l . We generate 10 samples.

That is, the latter case is more random than the former case.

Jump inference

Firstly, we show the numerical results for the jump inference. Let nl be the true

value of the jump at the location θ̂l, and σ0,J be the maximum value of σ0 below which

the jump inference succeeds. That is, for σ0 ≤ σ0,J , the jump inference succeeds. In Fig.

1, we show the performance of jump inferences for the step and direct methods by heat

map in the (η0, σ0) plane for types A and B and L = 18. Furthermore, we investigate

the ratio of the number of locations l where the jump inferences succeed to the total

number of locations L− 1.

r =
l

L− 1
. (33)

In Fig. 2, we show the ratios for the step and direct methods, rs and rd, and R = rs/rd.

As is seen from Figs. 1 and 2, both methods give comparable jump inferences although

the jump inference depends on samples. In Fig. 3, we show the η0 dependences of 〈σ0,J〉
averaged over 10 samples for type B. We find that for both methods 〈σ0,J〉 & 1 for
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Fig. 1. (Color) Heat map of jump inference in (η0, σ0) plane. L = 18. Step and direct methods. The

abscissa is σ0 which ranges from 0.1 to 2.0 with increment 0.1 from left to right, and the ordinate on

the left is η0 which ranges from 0.1 to 2.0 with increment 0.1 from top to bottom. (0, 1, · · · , 19) in

the heat map corresponds to (0.1, 0.2, · · · , 2.0) for the value of η0 and σ0. The ordinate on the right

corresponds to the color. Black(-1): jump is successfully inferred in both methods, magenta(0): jump

is successfully inferred only in the step method, orange(1): jump is successfully inferred only in the

direct method, white(2): jump is not inferred successfully in both methods. (a) Type A with ∆h = 0.1,

(b), (c), (d) type B with ∆h = 0.001. (b) sample 0, (c) sample 1, (d) sample 2.
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Fig. 2. (Color) Heat map of the ratio r = l/(L − 1) in (η0, σ0) plane. L = 18. Step and direct

methods. Type B, sample 1. (a) rs, (b) rd, (c) R = rs/rd. -1 : R > 1.1, 1: R < 0.9, 0: 0.9 ≤ R ≤ 1.1.
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Fig. 3. η0 dependences of sample averaged 〈σ0,J 〉 over 10 samples. L = 18. Type B. ∆h = 0.001. (a)

direct method, (b) step method.

Error comparison between step and direct methods

We define errors E1 and E2 as E1 =
∑L−1

i=1 (mi − τi)
2/

∑L−1
i=1 (mi)

2 and E2 =
∑L−1

i=1 (mi − m̂i)
2/

∑L−1
i=1 (mi)

2, where m̂i is the MPM estimate for mi. For the step

and direct methods, we denote E2 as Es
2 and Ed

2 , respectively. We show the heat map

of Es
2/E

d
2 for types A and B in Fig. 4. As is seen from the figures, there is a tendency

that in region where the jump inference succeeds in both methods, the errors for the

step method are smaller than or comparable to those for the direct method.
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Fig. 4. (Color) Error comparison between the step and direct methods. L = 18. Black(-1): Es
2/E

d
2 <

0.9, white(1): Es
2/E

d
2 > 1.1, magenta(0): 0.9 ≤ Es

2/E
d
2 ≤ 1.1. (a): type A, (b), (c), (d): type B. (b)

sample 0, (c) sample 1, (d) sample 2.

Optimal hyperparameters

As for h, in almost all regions where the number of jumps is 0, hopt takes the value 10

for type A and 0.1 for type B which are the maximum of the scan range. It is reasonable

because as h increases the jump is difficult to take place. Outside the region, it takes

small values. As for η̃, it takes values from the minimum 0.1 to the maximum 2.0 we
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scan for both types. From numerical results, as expected, we find that for both methods

ηopt and σopt are almost linearly dependent on η0 and σ0, respectively.

Location dependence of MPM inference

We show two examples of the location dependence of the MPM inference for the

step and direct methods for type A. The case that the result of the step method is

better than that of the direct method is shown in Fig. 5(a), and the opposite case is

shown in Fig. 5(b).
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Fig. 5. L = 18. Solid line: true phase differencemi. ◦: reduced phase difference τi. Dashed line: MPM

estimate m̂i for mi. ×: phase difference with noise yi. (a) Step method. η0 = 1.2, σ0 = 1.1, E1 = 0.49.

Es
2 = 0.20. For direct method, Ed

2 = 1.1. (b) Direct method. η0 = 1.9, σ0 = 0.3, E1 = 1.8. Ed
2 = 0.015.

For step method, Es
2 = 4.4.
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3.2 Regular phase differences obtained from phases

Next, we show the numerical results for phase differences which are generated from

regular phases. Even if the phases are regular, the phase differences are rather com-

plicated. Therefore, we apply the theory for random phases developed in this paper to

phase differences generated from regular phases.

We generate phases from the following polynomials.

φi =











b L
12
[1−

(

i−x0

a

)n

] |i− x0| ≤ a,

0 |i− x0| > a,

i = 1, · · · , L,

mi = φi+1 − φi, i = 1, · · · , L− 1.

where x0 = L+1
2
, a = a0(L − 1). We set a0 = 0.4, 0.6, b = 3, 5 and n = 2, 4. We gener-

ate the corrupted phase differences for σ0 = 0.1, 0.2, · · · , 2.0. For the hyperparameter

inference, we scan h = −10,−9.9, · · · , 10, η̃, η and σ = 0.1, 0.2, · · · , 2.
Jump inference

We show the numerical results of the jump inference for L = 14, 18 and 20 and

b = 5. We set a0 = 0.4, and then the phase difference abruptly changes at |i− L+1
2
| ≃

a(= 0.4(L− 1)). In Fig. 6, we show the σ0 dependence of the ratio r (eq. (33)) for the

step and direct methods, rs and rd. The average of phase differences is almost 0. The

region where the jump inference succeeds in the step method is the same as that in the

direct method for all L.
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r

Fig. 6. σ0 dependence of r. Solid line: rs (step1), ◦: rd (direct method). (a) L = 14, (b) L = 18, (c)

L = 20.
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Error comparison between step and direct methods

We compare errors Es
2 and Ed

2 . In Fig. 7, we show the ratio Es
2/E

d
2 . From this figure,

we find that the step method is better than or comparable to the direct method for σ0

where jumps are correctly inferred. This result is similar to that in the random phase

difference case.
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(c)

σ0

Fig. 7. σ0 dependences of the ratio of errors Es
2/E

d
2 . -1: E

s
2/E

d
2 < 0.9, 0: 0.9 ≤ Es

2/E
d
2 ≤ 1.1, 1:

Es
2/E

d
2 > 1.1. (a) L = 14, (b) : L = 18, (c) : L = 20.

Optimal hyperparameters

From numerical results, we find that hopt takes the small positive values for σ0

where non-zero jumps are inferred correctly, and for σ0 where zero jump is inferred

correctly it takes the value 10 which is the maximum of the scan range. This is the

same as in the random phase difference case. Let σm be the standard deviation of

phase differences. σm ≃ 1.4 for L = 14, 18, 20. As for η̃, it takes comparable value with

the value of σm when jump inference succeeds. For the region of σ0 where jumps are

inferred correctly in both methods, ηopt is nearly equal to σm and σopt takes values

0.2 ∼ 0.8. From these results of hyperparameter inference, η̃opt in the step method and

ηopt in the step and direct methods take values similar to σm in the region where the

jump inference succeeds. Therefore, without performing the hyperparameter inference,

we also performed numerical calculations replacing η̃ and η by 〈τ〉, the average of the

reduced phase differences, and obtained similar results. Here, we use 〈τ〉 instead of σm

since observers do not know σm. We omit the details.

Location dependence of MPM inference

We show the two cases of the location dependence of the MPM inference for L = 20.
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One case is that the MPM inference by the step method is better than that by the direct

method (Fig. 8(a)) and the other case is that the MPM inferences of both methods are

comparable (Fig. 8(b)).
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Fig. 8. L = 20, b = 5. Notations are the same as in Fig. 5. (a) σ0 = 0.4, Es
2/E

d
2 < 0.9, E1 = 0.94.

Step method. Es
2 = 0.045. For direct method, Ed

2 = 0.064. (b) σ0 = 0.5, 0.9 ≤ Es
2/E

d
2 ≤ 1.1, E1 = 0.93.

Direct method. Ed
2 = 0.61. For step method,Es

2 = 0.62.

We also performed numerical calculations for a0 = 0.6 where there is no discontinuity

of phase differences and for phases generated from the second order polynomial. We

obtained similar results to those shown above and omit them.

In this section, for small system sizes such as L up to 20, we found that the step

and direct methods give comparable MPM estimates of phase differences when jumps

are correctly inferred. In the next section, we perform the MPM estimate by the step

method in the large system sizes where the direct method is not available.

4. Large L cases

Firstly, we study random phase differences of type B. For L = 65, we generate 100

samples and show the heat map of the ratio of samples in which the jump inference

succeeds at all locations and that of the root mean square error (RMSE) in Fig. 9. RMSE

is defined as RMSE=
√

1
L−1

∑L−1
l=1 (ml − m̂s

l)
2. In Fig. 10, we show the σ0 dependence

of the sample average of the RMSE. From these figures, we note that in the region
√

η20 + σ2
0 . 1 in (η0, σ0) plane, the jump inference succeeds.

Next, we study the regular phase differences. For L = 50, 500 and b = 3 and 5, we

show the results of jump inferences in Fig. 11. σm is 0.86, 1.43, 0.85, and 1.41, σ0,J

is 0.5, 0.3, 0.6 and 0.5 for (L, b) = (50, 3), (50, 5), (500, 3), (500, 5), respectively. From

these results we find that our theory is applicable to the regular phases and large L
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Fig. 9. (Color) Heat map in (η0, σ0) plane for type B. L = 65. ∆h = 0.001. (a) Ratio of samples in

which jump inference succeeds at all locations, (b) sample average of RMSE.
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Fig. 10. σ0 dependence of RMSE. L = 65. ∆h = 0.001. (a) η0 = 0.1, (b) η0 = 1.0.

cases. As for the optimal hyperparameters, there are several results which are different

from the small L cases. We find that hopt becomes negative when rs becomes of order

of 0.5, and this is quite reasonable because jumps take place easier for negative h as

seen from eq. (20). η̃opt increases from the small value to 2.0 almost linearly and then

takes the value 2.0 because 2.0 is the maximum value of the parameter scan. We show

the location dependences of the phase differences in Fig. 12 for L = 50 and L = 500 in

the cases that the jump inferences succeed.
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Fig. 11. σ0 dependences of rs, the ratio of number of locations where the jump inference succeeds

to number of total locations. Step method. (a), (b) L = 50, (c), (d) L = 500. (a), (c) b = 3, (b), (d)

b = 5.
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Fig. 12. a0 = 0.4, n = 4, b = 5. Step II. (a) L = 50. Notations are the same as in Fig. 5. σ0 =

0.3, Es
2 = 0.035, Es

2/E1 < 0.9 and jump inference succeeds with non-zero jump. (b) L = 500. Solid

curve: mi, dashed curve: MPM estimate of mi. Corrupted and reduced phase differences are not drawn

for clear figures. σ0 = 0.5, Es
2 = 0.025, Es

2/E1 < 0.9 and jump inference succeeds with non-zero jump.

Now, we show the numerical results when the phase differences and the external

noises are generated from the correlated Gaussian distribution and the von-Mises dis-

tribution, respectively. We generate 10 samples of external noises for type B. In Ref. 13,

the location dependence of phase differences are shown for N = 64, α = 1, β = 5 and

h = 10−3. These values of N,α and β correspond to L = 65, η0 = 1 and σ0 = 1/
√
5 ≃

0.44 in our notations, respectively. As for h, we scan h = −0.1,−0.099, · · · , 0.1 and

the scan range of other hyperparameters are the same as in the previous calculations.

In Fig. 13, we show η0 dependences of 〈σ0,J〉with error bars, where bracket implies the

average over 10 samples. As L increases, 〈σ0,J〉 decreases approximately, as expected.

Finally, let us compare our results with previous ones. In Ref. 13, the posterior

mean (PM) method is used and the phases are inferred by taking the mean values of
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phases with respect to the posterior distribution, and the jumps are successfully inferred

except for the uniform shift. In our method, from Fig. 13(b), we note that 〈σ0,J〉 ∼ 0.5

at η0 = 1.0. In more details, we found that the jump inference succeeds in 7 of 10

samples for η0 = 1 and σ0 = 0.5. Since the performance of the jump inference depends

on samples and system sizes, it is difficult to judge whether the present method or the

method of the previous study is better. In Fig. 14, the location dependence of phase

differences is shown when the jump inference succeeds. In this case, the hyperparameters

are η̃opt = 1.1, ηopt = 1.0 and σopt = 0.4, and similar to the values η = 1.0 and σ = 0.5,

respectively. hopt = 0.024 is small as in the cases of the Gaussian noise when the MPM

inferences succeed with non-zero jumps.
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Fig. 13. η0 dependence of 〈σ0,J〉 with errors. (a) L = 18, (b) L = 65.
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Fig. 14. Location dependence of phase differences. Notations are the same as in Fig. 5. L = 65, η0 =

1, σ0 = 0.5. Step II. sample 1. E1 = 1.42, Es
2 = 0.024.
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5. Summary and discussion

In this paper, we proposed a one-dimensional phase unwrapping model and analyzed

it by the transfer matrix (TM) method. We assumed that during the observation process

of phase differences, these are corrupted by Gaussian noises and are reduced to values

in [−π, π). Thus, the reduced data may have discontinuities, which we call jumps, as a

function of location. In order to deal with the discontinuities, we introduced the three

state Potts model assuming that the jumps are not very big. We formulated the problem

on the basis of Bayesian inference using the maximizer of the posterior marginal (MPM)

estimate.

Firstly, we studied the case that the phase differences are generated from the corre-

lated Gaussian distribution. We proposed two methods, the step and direct methods.

In the step method, we inferred the corrupted data from the reduced data in step I,

and inferred the phase differences from the inferred corrupted data in step II. In the

direct method, we inferred the phase differences from the reduced data directly. In both

methods, we derived the expressions of the MPM estimates of the phase differences

and the posterior probabilities of the hyperparameters. We performed numerical calcu-

lations for several samples of phase differences and external noises. We compared the

performance of the step and direct methods for small values of L up to 20, because

numerical calculations of the direct method are difficult for values of L larger than 20

as explained below. Here, L is the system size, the number of locations where phases are

observed. We found that the MPM estimates of the phase differences for both methods

are comparable although the jump inference depends on samples. Next, we applied the

present theory to the regular phase differences obtained from phases generated from

polynomials. Similar to the case of random phase differences, we found that both meth-

ods give comparable results. Then, we studied the large L cases by the step method.

We studied the random phase differences for L = 65, and the regular phase differences

for L = 50 and L = 500. We found that we can infer the corrupted data and the

phase differences fairly well by using inferred hyperparameters in rather wide ranges of

noise amplitudes. The ranges depend on samples and the system sizes as in the cases of

small system sizes. Finally, we applied the step method to the case that the phases are

generated from the correlated Gaussian distributions as in our case, but the external

noises are generated from the von-Mises distribution studied in Ref. 13. We studied the

regions where the jump inference succeeds and found that in 7 of 10 samples we can
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infer the jumps successfully at almost the same parameters studied in Ref. 13. Since

the performance of the jump inference depends on samples and the system sizes, it is

difficult to judge whether the present method or the method of the previous study is

better.

Now, let us discuss applicability of the direct and step methods to large system

sizes and their computational times. The direct method is applicable to system sizes

of at most 20. This is because for the direct method the numbers of summations of

exponential functions in the formulae of the MPM estimate (eq. (11)) and the likelihood

function (eq. (18)) are extremely large. For example, the numbers are 3L−1 = 317 =

129, 140, 163 for L = 18 and 3499 ≃ 10238 for L = 500. No such summations exist

in the step method. For L = 18, the computational time to calculate the optimal

hyperparameters by the raster scan and the MPM estimates for one set of (η0, σ0) par

sample is about 503 minutes for the direct method and about 1.13 seconds for the

step method. That is, the step method is about 26,700 times faster than the direct

method. The main reason for this is that summations of exponential functions exist in

the direct method and the number of them is of order 108. Therefore, the step method

has significant advantages of applicability to large system sizes and extremely short

computational times.

We restrict ourselves to the one-dimensional model in this paper. By a similar

method to the present one, the analyses of the model which is composed of two strings,

we call it the ladder model, and the two-dimensional model are under investigation. We

will report the results of the investigation in the future.
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Appendix A: Derivation of Eigenvalues

In this Appendix, we derive the eigenvalues and the normalization factor C0 of the

correlated Gaussian distribution (eq. (4)).

P (m) = C0 exp(−
1

2η20

L
∑

i=1

(mi −mi−1)
2), (A·1)
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C0 =

L−1
∏

l=1

√

λl

2π

1

η0
, (A·2)

λl = 2(1− cos(
lπ

L
)) l = 1, 2, . . . , L− 1. (A·3)

Introducing the matrix A, P (m) is written as

P (m) = C0 exp(−
1

2η20
mTAm), (A·4)

A =



























2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 2 −1

0 · · · 0 0 −1 2



























. (A·5)

We derive the eigenvalues and eigenvectors of the following n× n matrix Bn for n ≥ 1.

Bn =



























α β 0 0 · · · 0

β α β 0 · · · 0

0 β α β · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 β α β

0 · · · 0 0 β α



























. (A·6)

Defining bn = detBn, it is calculated as

bn = αbn−1 − β2bn−2, n ≥ 3,

b1 ≡ α.

Defining cn = bn − ubn−1 for n ≥ 2, we obtain cn = vcn−1, where u and v satisfy

u+ v = α, uv = β2. That is, these are the solutions of the equation z2 − αz + β2 = 0,

u, v = 1
2
(α±

√

α2 − 4β2). Then, we obtain cn = vn−2c2, c2 = b2 − ub1 = v2. Therefore,

cn = vn for n ≥ 2. Thus, bn = vn + ubn−1 for n ≥ 2. From this relation, we obtain

bn =
∑n

k=0 v
kun−k for n ≥ 1. Now, let us derive the eigenvalue λ of the matrix A. The

characteristic equation of A is det(λE − A) = 0, where E is the unit matrix. This is

equal to bL−1 = 0 with α = λ− 2 and β = 1. Now, we show λ 6= 0 and λ 6= 4. If λ = 0

or λ = 4, we find α2 = 4 and u = v = α/2 = ±1. Therefore, bL−1 = LuL−1 6= 0. Thus,

λ 6= 0 and λ 6= 4. Then, u and v are different and are not equal to 0. Let us put u = reiθ
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where r and θ are real numbers. It follows v = e−iθ/r. Thus, we obtain

bL−1 =

L−1
∑

k=0

vkuL−1−k = uL−1

L−1
∑

k=0

(
v

u
)k = uL−11− ( v

u
)L

1− v
u

= uL−11− (e−2iθ/r2)L

1− e−2iθ/r2
.

Note that v
u

= e−2iθ/r2 6= 1. From bL−1 = 0, it follows (e−2iθ/r2)L = 1. Thus, we

obtain r = 1, e−2iθ = exp(2πl
L
i), l = 1, 2, · · · , L− 1. Therefore, ul = eiθl = exp(−πl

L
i), l =

1, 2, · · · , L − 1. From the relation u + v = λ − 2, we obtain λl = 2 + eiθl + e−iθl =

2+2 cos(πl
L
). By changing the label l to L− l, we obtain λl = 2(1+cos(π(L−l)

L
)) = 2(1−

cos(πl
L
)). As easily checked, the normalized eigenvector tk belonging to λl = 2(1−cos(πl

L
))

is given by

tk =

√

2

L





















sin
(

kπ
L

)

...

sin
(

lkπ
L

)

(l th row)
...

sin
(

(L−1)kπ
L

)





















.

Defining U = (t1, t2, · · · , tL−1) and v = UTm, we obtain mTAm =
∑L−1

l=1 λlv
2
l . Thus,

we obtain

C−1
0 =

∫

dm exp[− 1

2η20
mTAm] =

∫

dv exp[− 1

2η20

L−1
∑

l=1

λlv
2
l ] =

L−1
∏

l=1

√

2π

λl

η0.

Appendix B: Derivation of conditional probability

Here, we derive the conditional probability P (τl|xl), eq. (9). Since yl = xl + zl =

τl + 2πnl, the joint probability distribution of τl and nl is given by

P (τl, nl|xl) = P (τl + 2πnl|xl, σ) =
1√
2πσ

exp[−(τl + 2πnl − xl)
2

2σ2
]. (B·1)

Thus, we obtain

P (τl|xl) =
1√
2πσ

∞
∑

nl=−∞
exp[− 1

2σ2
(τl + 2πnl − xl)

2]. (B·2)

The normalization of P (τl|xl) is shown as follows.
∫ π

−π

P (τl|xl)dτl =
1√
2πσ

∞
∑

nl=−∞

∫ π

−π

exp[− 1

2σ2
(τl + 2πnl − xl)

2]dτl

=
1√
2πσ

∞
∑

nl=−∞

∫ (2nl+1)π

(2nl−1)π

exp[− 1

2σ2
(tl − xl)

2]dtl

=
1√
2πσ

∫ ∞

−∞
exp[− 1

2σ2
(tl − xl)

2]dtl = 1,
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where tl = τl + 2πnl.

Appendix C: Derivation of marginal distributions for direct method

Firstly, we give several expressions of concerned variables in the following.

P (τ |x)P (x) = C(
1√
2πσ

)L−1
′

∑

n

e−Hn,

Hn =
1

2σ2

L−1
∑

l=1

(τl + 2πnl − xl)
2 +

1

2η2

L−1
∑

l=0

(xl − xl+1)
2,

Zd =

∫

dxP (τ |x)P (x) = C(
1√
2πσ

)L−1

′
∑

n

∫

dxe−Hn,

e−Hn ≡
L−1
∏

l=0

Ψl(xl, xl+1, nl),

Ψl(xl, xl+1, nl) = e
− 1

2σ2 (τl+2πnl−xl)
2− 1

2η2
(xl−xl+1)

2

, l = 1, · · · , L− 2,

Ψ0(x1) = e
− 1

2η2
x2
1,

ΨL−1(xL−1, nL−1) = exp[− 1

2σ2
(τL−1 + 2πnL−1 − xL−1)

2 − 1

2η2
x2
L−1],

where x0 = xL = 0. For later use, we define ul(xl), dl(xl), a
u
l , a

d
l etc. as follows.

u1(x1) = Ψ0(x1), (C·1)

ul+1(xl+1) =

∫

dxlΨl(xl, xl+1, nl)ul(xl) (C·2)

=

∫

dxl exp[−
aul
2
x2
l + (

xl+1

η2
+ fu

l )xl −
x2
l+1

2η2
+ hu

l ], l = 1, 2, · · · , L− 1,

(C·3)

dL−1(xL−1) = ΨL−1(xL−1, nL−1), (C·4)

dl−1(xl−1) =

∫

dxlΨl−1(xl−1, xl, nl−1)dl(xl) (C·5)

=

∫

dxl exp[−
adl
2
x2
l + (

xl−1

η2
+ fd

l )xl −
x2
l−1

2η2
+ hd

l ], l = L− 1, L− 2, · · · , 1.

(C·6)

Now, let us calculate the marginal distributions.

P (xl|τ ) =
1

Zd
C

(

1√
2πσ

)L−1 ′
∑

n

∫

dx(l) exp(−Hn)
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= C(
1√
2πσ

)L−1

′
∑

n

∫

dxi−1dxi+1ui−1(xi−1)di+1(xi+1)

×Ψi−1(xi−1, xi, ni−1)Ψi(xi, xi+1, ni)

≡ C

(

1√
2πσ

)L−1 ′
∑

n

µl(xl,n), l = 2, 3, · · · , L− 2, (C·7)

P (x1|τ ) =
1

Zd
C

(

1√
2πσ

)L−1 ′
∑

n

d1(x1,n) ≡
1

Zd
C

(

1√
2πσ

)L−1 ′
∑

n

µ1(x1,n), (C·8)

P (xL−1|τ ) =
1

Zd
C

(

1√
2πσ

)L−1 ′
∑

n

uL−1(xL−1,n) ≡
1

Zd
C

(

1√
2πσ

)L−1 ′
∑

n

µL−1(xL−1,n).

(C·9)

Since µl(xl,n)s are all Gaussian distributions, we denote them as

µl(xl,n) ∝ e−
1
2
a
(n)
l

x2
l
+b

(n)
l

xl+c
(n)
l , (C·10)

where a
(n)
l , b

(n)
l and c

(n)
l depend on n. For any l among 1, 2, 3, · · · , L−1, Zd is expressed

as

Zd =

∫

dxlP (xl|τ ) = C(
1√
2πσ

)L−1
′

∑

n

∫

dxlµl(xl,n) (C·11)

= C

(

1√
2πσ

)L−1
[

∏

j<l

√

2π

auj

][

∏

j>l

√

2π

adj

] ′
∑

n

√

2π

a
(n)
l

e

(

b
(n)
l

)2

2a
(n)
l

+c
(n)
l

. (C·12)

a
(n)
l , b

(n)
l and c

(n)
l are defined as follows.

a
(n)
1 = − 1

η4ad2
+

2

η2
+

1

σ2
,

a
(n)
l = − 1

η4aul−1

− 1

η4adl+1

+
2

η2
+

1

σ2
(l = 2, · · · , L− 2),

a
(n)
L−1 = − 1

η4auL−2

+
2

η2
+

1

σ2
,

b
(n)
1 =

fd
2

η2ad2
+

τ1 + 2πn1

σ2
,

b
(n)
l =

fu
l−1

η2aul−1

+
fd
l+1

η2adl+1

+
τl + 2πnl

σ2
(l = 2, · · · , L− 2),

b
(n)
L−1 =

fu
L−2

η2auL−2

+
τL−1 + 2πnL−1

σ2
,

c
(n)
1 =

(fd
2 )

2

2ad2
+ hd

2 −
(τ1 + 2πn1)

2

2σ2
,
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c
(n)
l =

(fu
l−1)

2

2aul−1

+
(fd

l+1)
2

2adl+1

+ hu
l−1 + hd

l+1 −
(τl + 2πnl)

2

2σ2
(l = 2, · · · , L− 2),

c
(n)
L−1 =

(fu
L−2)

2

2auL−2

+ hu
L−2 −

(τL−1 + 2πnL−1)
2

2σ2
.

From eqs. (C·1) - (C·6), the following recursion relations for aui , a
d
i etc. are obtained.

au1 = adL−1 =
1

σ2
+

2

η2
,

fu
1 =

τ1 + 2πn1

σ2
,

fd
L−1 =

τL−1 + 2πnL−1

σ2
,

hu
1 = −(τ1 + 2πn1)

2

2σ2
,

hd
L−1 = −(τL−1 + 2πnL−1)

2

2σ2
,

aui+1 =
1

σ2
+

2

η2
− 1

η4aui
(i = 1, · · · , l − 2),

adi−1 =
1

σ2
+

2

η2
− 1

η4adi
(i = l + 2, · · · , L− 1),

fu
i+1 =

τi+1 + 2πni+1

σ2
+

fu
i

η2aui
(i = 1, · · · , l − 2),

fu
i−1 =

τi−1 + 2πni−1

σ2
+

fd
i

η2adi
(i = l + 2, · · · , L− 1),

hu
i+1 = −(τi+1 + 2πni+1)

2

σ2
+

(fu
i )

2

2aui
+ hu

i (i = 1, · · · , l − 2),

hd
i−1 = −(τi−1 + 2πni−1)

2

σ2
+

(fd
i )

2

2adi
+ hd

i (i = l + 2, · · · , L− 1).

Appendix D: Derivation of MPM estimate for step method, step I

We rewrite HI as

HI = −L − Y, (D·1)

where L and Y are given as follows.

L =
L−1
∑

i=1

(aisi + bis
2
i − cisisi+1), (D·2)

Y = − 1

2η̃2

L
∑

i=1

(τi − τi−1)
2, (D·3)

ai = −2π

η̃2
(2τi − τi+1 − τi−1), (i = 1, · · · , L− 1), (D·4)
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bi = −4π2

η̃2
− h = b, (i = 1, · · · , L− 1), (D·5)

ci = −4π2

η̃2
, (i = 1, · · · , L− 2), cL−1 = 0. (D·6)

Let us denote the summation of sl = 0,±1 as Trl. Then, the partition function ZI is

ZI = TrL−1TrL−2 · · ·Tr1e−HI = eYTrL−1TrL−2 · · ·Tr1eL. (D·7)

Let G1 be the term which includes s1 and G1 be the other terms in L.

L = G1 + G1. (D·8)

We define Ll as

Ll ≡
L−1
∑

i=l+1

(aisi + bis
2
i − cisisi+1). (D·9)

Thus, we have

G1 = a1s1 + b1s
2
1 − c1s1s2, G1 = L1. (D·10)

Note that L = L0, LL−1 = 0. Tr1 eG1 is given by

Tr1 eG1 = 1 + 2eb1 cosh(a1 − c1s2). (D·11)

Since si = 0,±1, we obtain

eBsi = 1 + sinh(B)si + (cosh(B)− 1)s2i , (D·12)

1 + A cosh(B + Csi) = DeEsi+Fs2i , (D·13)

where

D = 1 + A cosh(B), (D·14)

E =
1

2
ln

[

1 + A cosh(B + C)

1 + A cosh(B − C)

]

, (D·15)

F =
1

2
ln

[

(1 + A cosh(B + C))(1 + A cosh(B − C))

(1 + A cosh(B))2

]

. (D·16)

Now, we use the TM method. For l = 2, · · · , L, we successively define Gl + Gl as

Trle
Gl+Gl = Dle

Gl+1+Gl+1, l = 1, 2, 3, · · · , L− 1. (D·17)

Thus, we obtain

Gl = ulsl + vls
2
l − wlslsl+1, l = 1, · · · , L− 1, (D·18)

Gl = Ll, l = 1, · · · , L− 1, (D·19)

(ul, vl, wl) = (al + El−1, bl + Fl−1, cl), l = 2, · · · , L− 1, (D·20)

25/29



J. Phys. Soc. Jpn.

where we define

Dl = D(ul, vl) ≡ 1 + 2evl cosh(ul), l = 1, · · · , L− 1, (D·21)

El = E(ul, vl, wl) =
1

2
ln

D(ul − wl, vl)

D(ul + wl, vl)
, l = 1, · · · , L− 1, (D·22)

Fl = F (ul, vl, wl) =
1

2
ln

[

D(ul − wl, vl)(D(ul + wl, vl)

D(ul, vl)2

]

, l = 1, · · · , L− 1.

(D·23)

From eq. (D·10), we have

(u1, v1, w1) = (a1, b1, c1). (D·24)

Thus, we obtain

ZI = eYD1D2D3 · · ·DL−2DL−1.

Let us denote the mapping (D·20) as

ul+1 = al+1 +G(ul), l = 1, 2, · · · , L− 2, (D·25)

ul = (ul, vl, wl)
T, al = (al, b, cl)

T, (D·26)

G(ul) = (E(ul), F (ul), 0)
T, (D·27)

where ul,al and G(ul) are column vectors and T denotes the transpose. We obtain

wl = cl = −4π2

η̃2
, l = 1, · · · , L− 2, (D·28)

wL−1 = cL−1 = 0. (D·29)

The average values of sr and s2r (r = 1, · · · , L− 1) are calculated as

〈sr〉 =
1

ZI
TrL−1TrL−2 · · ·Tr1(sre−HI)

=
∂

∂ur

lnZI =

L−1
∑

k=r

1

Dk

∂Dk

∂ur

, (D·30)

〈s2r〉 =
∂

∂vr
lnZI =

L−1
∑

k=r

1

Dk

∂Dk

∂vr
. (D·31)

In order to estimate 〈sr〉 and 〈s2r〉, the expressions for ∂Dk

∂ul
and ∂Dk

∂vl
are necessary. These

are given as
(

∂Dk

∂ul

,
∂Dk

∂vl

)

=
(

D̄u(uk, vk), D̄v(uk, vk)
)

×dG(uk−1)dG(uk−2) · · ·dG(ul+1)dG(ul), (D·32)
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( 1 ≤ l ≤ L− 1, l < k ≤ L− 1),

where

D̄u(u, v) ≡ ∂D(u, v)

∂u
= 2ev sinh(u), (D·33)

D̄v(u, v) ≡ ∂D(u, v)

∂v
= 2ev cosh(u), (D·34)

dG(u) =





∂E(u)
∂u

∂E(u)
∂v

∂F (u)
∂u

∂F (u)
∂v



 , u = (u, v, w). (D·35)

Appendix E: Derivation of MPM estimate for step method, step II

Let us calculate 〈xi〉. −HII is rewritten as

−HII = L − Y, (E·1)

where

L =

L−1
∑

i=1

(

−ai
2
x2
i + bixi + cixixi+1

)

, (E·2)

Y =
1

2σ2

L−1
∑

i=1

y2i , (E·3)

ai =
1

σ2
+

2

η2
= a (i = 1, · · · , L− 1), (E·4)

bi =
1

σ2
yi (i = 1, · · · , L− 1), ci =

1

η2
(i = 1, · · · , L− 2), cL−1 = 0. (E·5)

Let Fl be the integration operator with respect to xl. Then, we have

FL−1 ◦ FL−2 ◦ · · ·F1[e
−HII ] = e−YFL−1 ◦ FL−2 ◦ · · · F1[e

L]. (E·6)

In L, let G1 be terms which include x1 and G1 be other terms.

L = G1 + G1. (E·7)

We successively define Gl + Gl (l = 2, · · · , L) as

Fl[e
Gl+Gl] = Ale

Gl+1+Gl+1, l = 1, 2, · · · , L− 1, (E·8)

where Gl consists of terms which have xl and Gl consists of other terms. Thus, we have

Gl = −ul

2
x2
l + Plxl + wlxlxl+1, l = 2, · · · , L− 1, GL = 0, (E·9)

G l = Ll +
l−1
∑

i=1

P 2
i

2ui

, l = 2, · · · , L− 1, GL =
L−1
∑

i=1

P 2
i

2ui

, (E·10)
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Al =

√

2π

ul

, l = 1, · · · , L− 1, (E·11)

u1 = a1, P1 = b1, w1 = c1, (E·12)

(ul, Pl, wl) = (a− w2
l−1

ul−1

, bl +
Pl−1wl−1

ul−1

, cl), l = 2, · · · , L− 1. (E·13)

We obtain the following relations.

wl = cl =
1

η2
, l = 1, · · · , L− 2, wL−1 = cL−1 = 0, (E·14)

ul+1 = a− 1

η4
1

ul

≡ g(ul), l = 1, · · · , L− 2, (E·15)

Pl+1 = bl+1 +
1

η2
1

ul

Pl, l = 1, · · · , L− 2. (E·16)

In order that the integration by xi converges, ul > 0 should hold for l = 1, · · · , L−1. Let

us prove this. Since a = 1
σ2 +

2
η2
, we have u1 = a > 0. The fixed points of the mapping

ul+1 = g(ul) are u± = 1
2
{a ±

√

a2 − ( 2
η2
)2}. Both solutions are real and positive, and

u+ is stable and u− is unstable. Since u+ < a = u1, ul is positive and monotonically

decreases, and tends to u+ as l → ∞. This completes the proof. Therefore, we obtain

ZII = e−YA1A2 · · ·AL−2AL−1e
∑L−1

i=1

P2
i

2ui . (E·17)

By a similar procedure, we derive the expression of the average 〈xr〉 as

〈xr〉 = η2
L−1
∑

k=r

( k
∏

m=r

1

ûm

)

Pk. (E·18)

where we define ûi = η2ui.
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