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We study a phase unwrapping model in the one-dimensional space on the basis of
Bayesian inference using the maximizer of posterior marginals (MPM) estimate by the
statistical mechanical methods. We propose a model in which the recursion relations
to obtain statistical quantities such as MPM estimates are derived. We introduce the
three state Potts model to handle the discontinuities in observed data, and propose
two methods, the step and direct methods. We derive the recursion relations for MPM
estimates of hyperparameters and phase differences in both methods, and investigate
the random and regular phase differences, and previously studied other type of random
phase differences. We find that the phase differences are inferred fairly well in rather
wide ranges of noise amplitudes. The ranges depend on samples and the system sizes.
Furthermore, we find that the step method has performance in phase unwrapping com-
parable to the direct method, and that it is much faster in numerical computation and

applicable to much larger system sizes than the direct method.
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1. Introduction

Phase unwrapping') is a technique to infer true phases from corrupted and re-
duced phases. We give one example of one-dimensional phase unwrapping. That is the
vestibulo-ocular reflex (VOR) of vertebrate animals, which is the eye movement system
that stabilizes the field of view. When the head rotates to one direction, the eyes ro-
tate to the opposite direction to retain the field of view. From experimentally observed
rotation velocity of the head f;(t) and the eye movement velocity f,(t), their Fourier
transformations f;(w) and f,(w) are calculated. From A - a(w) + ib(w), the gain

fi(w)
a(w)2 + b(w)? and the phase ¢(w) = tan~*(%2) are obtained. ¢(w) represents the

a(w
phase shift between both velocities and has iml(o(irtant information on eye movement
response to head movement at each frequency. Since ¢(w) is reduced to the value in
the interval [—7, ), it is necessary to unwrap the phase. It is well known that if there
exists external noise, the phase unwrapping becomes difficult.
Many techniques of phase unwrapping have been proposed from various view-

211 However, in general two-dimensional models, theoretical treatments are so

points.
difficult that we may not able to confirm simulation results theoretically. It is quite
desirable to introduce a model in which statistical quantities such as the maximizer of
posterior marginals (MPM) estimates are analytically derived.

One-dimensional phase unwrapping models have been investigated from various
viewpoints, such as the non-Gaussian filtering method,'? the maximum a posterior

813) and so

probability (MAP) or MPM estimations based on the Bayesian inference,
on. In this paper, we propose a model in which the phase differences are generated from
the correlated Gaussian distribution and external noises are generated from the Gaus-
sian distribution. In our formulation, phase differences are corrupted by external noise
and reduced to [—m,7) during the observation process. We assume that the disconti-
nuities in the reduced data, which we call jumps, are not very big, and introduce the
three state Potts model.'"'%) We propose two methods, the step and direct methods.
In the step method, the corrupted data are inferred from the reduced data in step I,
and the phase differences are inferred from the corrupted data in step II. Hyperparam-
eters are introduced and their priors and likelihood functions are assumed by imposing
continuity of phases and/or phase differences. On the other hand, in the direct method,

we infer the phase differences from the reduced data directly. We derive the recursion

relations for the variables by which the marginal distributions and the MPM estimates
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are calculated by using the so-called transfer matrix (TM) method'*) which is also used

15,16)

in Information science etc. and has different names such as the belief propagation

(BP).

We perform numerical calculations in not only the random phase difference but also
in the regular phase differences for small system sizes. Next, we study the large system
sizes by the step method because the direct method is not available. Finally, we study
the case that the phases are generated from correlated Gaussian distributions and suffer
from the external noises generated from the von-Mises distribution studied in Ref. 13.
By regarding the phases in Ref. 13 as the phase differences, we apply the step method
to these phase differences and study the regions where the jump inference succeeds by
comparing with results of the previous study.

The construction of the paper is as follows. In §2, we formulate the direct and step
methods. In §3, we show numerical results for the random and regular phase differences.
§4 contains a summary and discussion of the results. In the Appendices, we derive
some mathematical relations, and describe the outline of the derivation of the marginal

distributions and the MPM estimates for the step and direct methods.

2. Formulation

Let 0; be the coordinate at which i-th phase ; is observed (i = 1,---, L). The true
phase difference is m; = §41—&; (i =1, -+, L—1). We definem = {my, mg, -+ ,mp_1}.
We assume that the white Gaussian noise z; with mean 0 and variance o3 is added to

the phase difference m; during observation. Let y; be a corrupted phase difference
yi = mi+z,i=1--,L—1 (1)

Furthermore, we assume that the corrupted phase differences are observed at the middle
point 0; between 6; and 6,,; and are reduced to values in [—m,7) (i = 1,---,L — 1).

Let 7; be the reduced phase difference which is defined by

7, = y; mod 2w, € [-mm),i=1---,L—1. (2)

Then,
Yi = T;+2mn;. (3)
We call n; a jump. Thus, the observable is 7 = (71, 72, -+ ,7,_1). In order to apply the

Bayesian inference, we assume that phase differences obey some probability distribution.

In this paper, we assume that m,; is generated from the following correlated Gaussian
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distribution,

1 L
P(m) = C exp(—2—772 > (mi—mi)?), (4)

0 =1

L—1

N1
Co= == 5
0 111 27y (5)

I
Al:2(1—cos(f))> 1=1,2,...,L—1, (6)

where mg = my = 0 and 79 > 0. See Appendix A. By the direct method, the phase
differences m are inferred from 7 directly, and by the step method, the jumps n =
(ny,mna, -+ ,ng_1) are inferred from 7 firstly, and then m are inferred from y = 7+27mn.
We introduce the random variables s = (s1, 89, ,s,-1) and & = (21,29, - ,Tp_1)

which are used to estimate n and m, respectively. P(x) is given by

P(x) = C’eXp(—Qi?72 Z(llfz —x-1)%), (7)
e DV
C= ﬁﬁ’ (8)

where xyp = 7, = 0 and 1 > 0. Furthermore, we assume that the number of jumps are
not very many, and s; takes three values of 0, +1, that is, we study the three state Potts

model.

2.1 Formulation for direct method
Firstly, we explain the direct method. From the prior P(x) and the conditional
probability P(7|z;), we obtain the posterior distribution P(z;|7). See Appendix B.

1 < 1
P(nlz) = N Z eXp[—ﬁ(TlJr??mz—ﬂ)Q],
n;=—0o0
L-1

P(rlz) = [] Pl

=1

Plalr) = Zid 2 P(r|z)P()

1 1 L—1
- 7°(7=)
Zq 2ro

Zy = /de(ﬂw)P(w),
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dx = d.ﬁlfld.TQ R d.ﬁL’L,h

de® =dx,. ... .. dxy_q (excluding dx;),
2{: = 2{: jg: ... ZE: :
n n1=—00 N2=—00 nrp_1=—00

The derivation of these relations and definitions of ad, a¥ and their recursion relations

30 %
n)’ bl(n) an) are shown in Appendix C. In the MPM estimates, since the

to obtain a§
expression of P(x;|7), eq. (11), contains infinitely many terms in the summation, we
restrict the value of n; to three values 0, £1 assuming that jumps are not very big. We
replace Y, by the following >,
/

S DD DT M 1

N m=0+1n=0+1  ny_;=0,%1
We denote the MPM estimates for m; and n; as m; and n;, respectively. m; is x; which
maximizes an exp[—%alm):zcl2 + blm)xl + cl(m]. 7y 18 determined as the value s; which
minimizes |1y — (1 + 27s;)|.

Hyperparameter inference

The posterior probability for n and o is given by
P(n,olT) o P(rln,0)P(n,0). (16)

We assume that we do not have any information on the prior P(n,o), and put

P(n, o)=constant. We obtain
Plnolr) x P(rin.a) = [ daP(rle,0)P(aln) = Za (17)

Z4 1is calculated as

1\ o o | [ 27 (bz(n)>2
Zd = C < ) - - exp[ + C(n)],
=) ] (| et v

(18)

where [ is any integer value from 1 to L — 1. Note that P(7|x, o) is normalized since
i J7_dr|P(t|x,0) = 1. Thus, we only have to maximize Z,. Instead of Zy, we
maximize In Z4 with respect to o and 7.

1 1
nZy = —(L—-1)In(no)— §Zlna}1 — 52111(1?

j<l j>1
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n
/o™ 20"

oy (b<n>)2
+In (Z exp| : + cl(n)]) + constant. (19)

2.2 Formulation for step method
2.2.1 Step I

We infer the jumps n. We set the prior of s; as
P(s) o eIl (20)

For any positive integer p, |s;|P = |s;] since s; = 0,£1. We put p = 2 in this paper.
The jump is more difficult to take place for A > 0, and is easier to do for h < 0. The
likelihood function P(7|s) is assumed to be

P(t|s) o e H(T:S) (21)

L

H(r,s) = Z( +2ms; — (Tie 1+27T3i_1)>2, (22)

where 79 = 7, = 0, sg = sp = 0. That is, we assume that phase differences change

continuously. By the Bayesian formula, we obtain

P(s|T) o« P(t1|s)P(s) x e Mi(ST) (23)
L1
Hi(s,7) = H(T,s)+ th?
i—1
| L 2 L1
- 27 (Ti +27s; — (1321 + 27?51-1)) +h Z sz, (24)
i=1 =1

In order to estimate n; and y;, we adopt the MPM inference. Let P;(s;) be the marginal

distribution of s;. Since s; takes values 0, and £1, we obtain

P(0) =1~ (s7), Pi(1) = ({s) + (s1))/2, Pi(=1) = ({s7) — (s))/2. (25)
Thus, the MPM estimate n; for n; is the argument which gives the maximum among
P;(0), Pi(1) and P;(—1). We derive analytic formulae for (s;) and (s?) by using the TM
method. See Appendix D.

Hyperparameter inference

Let us denote the summation of s; = 0, &1 as Tr;. We obtain

P(h,q|T) o< P(7|h,7) H Tr)|P(T, s|h,n) [H Trle ™ = Z;. (26)
1=1
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Since P(7|h,7) should be normalized, it is necessary to calculate [[]' [T _dn)Z.

L-1 o
11 / an) 7
=177

L— L

L1 1 L-1 2
T 1
— [H / dTl][H Tr;] exp[—h E |5 [P — P <7-Z- +27s; — (Tio1 + 27Ts,~_1)) -
=17/~ i=1

i=1 i=1
This is easily calculated numerically by the TM method. We maximize In Z with respect

to h and 7 to obtain the hyperparameters.

2.2.2 Step 11

We infer the estimate ¢; for the corrupted phase difference y; by using the MPM
estimate of the jump n;, that is, ¢; = 7, + 27n;. Below, we denote g by y for simplicity.
We proceed to estimate m from y. The conditional probability P(y|x) is assumed
to be the uncorrelated Gaussian distribution the same as P(y|m) with the standard

deviation o instead of oy.

P( ‘ ) Iﬁ 1 _ (yi—ﬂgi)2 (27>
y £ - e 20 .
iV 2ro

From the Bayesian formula, we have

1 — I
Plxly) o P(y\w)P(w)zCnme i, (28)

ZH = /dd)GHH, (29)

HH = 5 : (I‘Z — yZ)Q + L Z(.CL’Z — .’172;1)2. (30)

Let us consider the method to estimate m; from y by the MPM inference. Since the
marginal distribution P;(z;) for x; is the Gaussian distribution, the maximum of P;(x;)
is attained at the average value (z;). Thus, the MPM estimate 7, is (z;). We use the
TM method to derive the formula for (x;). See Appendix E.

Hyperparameter inference

1 1
P, x Plylno)=Cy—— | dpe ™ = Cy——o— 7,
(n,0ly) (yln, o) H(\/%U)Ll/ H(\/gU)LA =

(31)
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Since P(y|n, o) is normalized, we maximize [ = CHWZH with respect to n and

1
o)

0. Instead, we maximize In [.

In/ = —(L—-1)In(no)+ In Zy + constant. (32)

3. Numerical results
3.1 Random phase differences

We generate phase differences and corrupted phase differences for 0,00 =
0.1,0.2,---,2.0. For the hyperparameter inference, we scan h = —10.0,—9.9,--- ,10.0
with Ah = 0.1, or h = —0.1,—-0.099, - - - , 0.1 with Ah = 0.001, and 7 = 0.1,0.2,--- ,2.0
for step I, and n,0 = 0.1,0.2,--- ;2.0 for step II and the direct method. We decide the
optimal parameters which maximize the likelihood functions. We also use the gradient
method, and find that both methods give almost the same optimal parameters and
the MPM estimates. We generate two types A and B of phase differences and external
noises. For type A, we generate {m;} from the correlated Gaussian distribution (eq.
(4)) with ng = 1 and {2/} with the Gaussian distribution with mean 0 and standard
deviation 1. Then, we set m; = nom} and 2; = 0¢2;. We generate only one sample. For
type B, we generate {m;} for each 1y from the correlated Gaussian distribution (eq.
(4)) with no. For {2}, we generate {2} with the Gaussian distribution with mean 0
and standard deviation 1 for each sample, and set z; = 0¢2}. We generate 10 samples.
That is, the latter case is more random than the former case.

Jump inference

Firstly, we show the numerical results for the jump inference. Let n; be the true
value of the jump at the location él, and oy ; be the maximum value of oy below which
the jump inference succeeds. That is, for oy < 0¢ s, the jump inference succeeds. In Fig.
1, we show the performance of jump inferences for the step and direct methods by heat
map in the (ng, o) plane for types A and B and L = 18. Furthermore, we investigate
the ratio of the number of locations [ where the jump inferences succeed to the total

number of locations L — 1.

l
SR 3
r 71 (33)

In Fig. 2, we show the ratios for the step and direct methods, r* and 74, and R = 75 /r<.
As is seen from Figs. 1 and 2, both methods give comparable jump inferences although
the jump inference depends on samples. In Fig. 3, we show the 1y dependences of (g )

averaged over 10 samples for type B. We find that for both methods (og ;) 2 1 for
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Fig. 1. (Color) Heat map of jump inference in (1o, 0¢) plane. L = 18. Step and direct methods. The
abscissa is og which ranges from 0.1 to 2.0 with increment 0.1 from left to right, and the ordinate on
the left is 79 which ranges from 0.1 to 2.0 with increment 0.1 from top to bottom. (0,1,---,19) in
the heat map corresponds to (0.1,0.2,---,2.0) for the value of 1y and o¢. The ordinate on the right
corresponds to the color. Black(-1): jump is successfully inferred in both methods, magenta(0): jump
is successfully inferred only in the step method, orange(1): jump is successfully inferred only in the
direct method, white(2): jump is not inferred successfully in both methods. (a) Type A with Ah = 0.1,
(b), (¢), (d) type B with Ah = 0.001. (b) sample 0, (c) sample 1, (d) sample 2.

(a)
. 10
-0
;
] 07
] 06
] 0s
] os

wmm A o i,

012345678 910111213141516171819

0o 0o 0o

Fig. 2. (Color) Heat map of the ratio r = /(L — 1) in (no,00) plane. L = 18. Step and direct
methods. Type B, sample 1. (a) 75, (b) 4, (¢) R=7/rd. -1 : R >1.1,1: R<0.9,0: 0.9 < R<1.1.
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Fig. 3. 1y dependences of sample averaged (oo, ;) over 10 samples. L = 18. Type B. Ah = 0.001. (a)
direct method, (b) step method.

Error comparison between step and direct methods

We define errors F; and Fy as FE, = Zf:_ll(ml - 7)?/ ZZAL:_ll(mi)2 and By =
ZiL:_ll(mi — my;)?/ ZiL:_ll(mi)2, where m; is the MPM estimate for m;. For the step

and direct methods, we denote E, as ES and E, respectively. We show the heat map

of E5/FEY for types A and B in Fig. 4. As is seen from the figures, there is a tendency
that in region where the jump inference succeeds in both methods, the errors for the

step method are smaller than or comparable to those for the direct method.

191817161514131211109 8 7 6 5 4 3 2 1 0
191817161514131211109 8 7 6 5 4 3 2 1 0
191817161514131211109 8 7 6 5 4 3 2 1 0

012345678 910111213141516171819

0o 0o 0o 0o

Fig. 4. (Color) Error comparison between the step and direct methods. L = 18. Black(-1): E5/E$ <
0.9, white(1): E5/E$ > 1.1, magenta(0): 0.9 < E5/E$ < 1.1. (a): type A, (b), (c), (d): type B. (b)
sample 0, (c) sample 1, (d) sample 2.

Optimal hyperparameters

As for h, in almost all regions where the number of jumps is 0, h,,; takes the value 10

for type A and 0.1 for type B which are the maximum of the scan range. It is reasonable

012345678 910111213141516171819 - 012345678 910111213141516171819 - 012345678 910111213141516171819

because as h increases the jump is difficult to take place. Outside the region, it takes

small values. As for 7, it takes values from the minimum 0.1 to the maximum 2.0 we
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scan for both types. From numerical results, as expected, we find that for both methods
Nops aNd 0, are almost linearly dependent on ny and oy, respectively.

Location dependence of MPM inference

We show two examples of the location dependence of the MPM inference for the
step and direct methods for type A. The case that the result of the step method is
better than that of the direct method is shown in Fig. 5(a), and the opposite case is
shown in Fig. 5(b).

3 & - 4r— —
2| : 8 A
2 |

o 1 my; o R

al J -] g

1 Ui :

2 i o i
T ]

3} B 4 i

4 R = oy

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

l l

Fig. 5. L = 18. Solid line: true phase difference m;. o: reduced phase difference 7;. Dashed line: MPM
estimate m; for m;. x: phase difference with noise y;. (a) Step method. 19 = 1.2,09 = 1.1, E; = 0.49.
E5 = 0.20. For direct method, EY = 1.1. (b) Direct method. 79 = 1.9,09 = 0.3, E; = 1.8. E$ = 0.015.
For step method, E5 = 4.4.
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3.2 Regular phase differences obtained from phases

Next, we show the numerical results for phase differences which are generated from
regular phases. Even if the phases are regular, the phase differences are rather com-
plicated. Therefore, we apply the theory for random phases developed in this paper to
phase differences generated from regular phases.

We generate phases from the following polynomials.

ball (—) | Ji— a0 <,

0 li — x| > a,
mi:¢i+1_¢i7 22177[/_1

where g = %, a = ag(L —1). We set ag = 0.4,0.6,b = 3,5 and n = 2,4. We gener-
ate the corrupted phase differences for oy = 0.1,0.2,---,2.0. For the hyperparameter
inference, we scan h = —10,-9.9,--- .10, ,n and 0 = 0.1,0.2,--- , 2.

Jump inference

We show the numerical results of the jump inference for L = 14,18 and 20 and
b =5. We set ap = 0.4, and then the phase difference abruptly changes at |i —
a(=0.4(L —1)). In Fig. 6, we show the 0y dependence of the ratio r (eq. (33)) for the

IZSIDN
)~

step and direct methods, r* and 7. The average of phase differences is almost 0. The
region where the jump inference succeeds in the step method is the same as that in the

direct method for all L.

———T——— \
! 7%—9—9—9—9—; tr r
08 - g 08| 08 -
06 - g 06 06 -

r r r
04 - g 04t 04 -
02 g 02f 02
of g of g of
o e o
0 02040608 1 12141618 2 0 02040608 1 12141618 2 0 02040608 1 12141618 2
0o (o)) 0o

Fig. 6. 0g dependence of r. Solid line: r° (stepl), o: r¢ (direct method). (a) L = 14, (b) L = 18, (c)
L = 20.
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Error comparison between step and direct methods

We compare errors E5 and ES. In Fig. 7, we show the ratio E5/E¢. From this figure,
we find that the step method is better than or comparable to the direct method for oq
where jumps are correctly inferred. This result is similar to that in the random phase

difference case.

02 | 02 |

-04 | -04 |
-0.6 - -0.6

-08 | -08 |

Y

1 N 1
0 02040608 1 12141618 2 0 02040608 1 12141618 2 0 02040608 1 12141618 2
0o 00 0o

Fig. 7. o0p dependences of the ratio of errors E§/FES. -1: E5/ES$ < 0.9, 0: 0.9 < E3/E¢ < 1.1, 1:
ES/ES>1.1. (a) L =14, (b) : L =18, (c) : L = 20.

Optimal hyperparameters

From numerical results, we find that h,, takes the small positive values for oy
where non-zero jumps are inferred correctly, and for og where zero jump is inferred
correctly it takes the value 10 which is the maximum of the scan range. This is the
same as in the random phase difference case. Let o, be the standard deviation of
phase differences. o, ~ 1.4 for L = 14, 18,20. As for 7, it takes comparable value with
the value of o, when jump inference succeeds. For the region of oy where jumps are
inferred correctly in both methods, 7., is nearly equal to o, and o,, takes values
0.2 ~ 0.8. From these results of hyperparameter inference, 7,,; in the step method and
Nopt 11 the step and direct methods take values similar to o, in the region where the
jump inference succeeds. Therefore, without performing the hyperparameter inference,
we also performed numerical calculations replacing 77 and 7 by (7), the average of the
reduced phase differences, and obtained similar results. Here, we use (1) instead of o,
since observers do not know o,,. We omit the details.

Location dependence of MPM inference

We show the two cases of the location dependence of the MPM inference for L = 20.
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One case is that the MPM inference by the step method is better than that by the direct
method (Fig. 8(a)) and the other case is that the MPM inferences of both methods are
comparable (Fig. 8(b)).

4 4
3 3
L
0 m; ot
al Yi U
_2,
2| Ti 4|
3 4l
-4 -5

o
0 2 4 6 8 10 12 14 16 18 20
2 2

T T R R R R R
0 2 4 6 8 10 12 14 16 18 20

Fig. 8. L = 20,b = 5. Notations are the same as in Fig. 5. (a) o9 = 0.4, E5/ES < 0.9, F; = 0.94.
Step method. E§ = 0.045. For direct method, E$ = 0.064. (b) 0p = 0.5,0.9 < E§/ES < 1.1, By = 0.93.
Direct method. E$ = 0.61. For step method,E§ = 0.62.

We also performed numerical calculations for ay = 0.6 where there is no discontinuity
of phase differences and for phases generated from the second order polynomial. We
obtained similar results to those shown above and omit them.

In this section, for small system sizes such as L up to 20, we found that the step
and direct methods give comparable MPM estimates of phase differences when jumps
are correctly inferred. In the next section, we perform the MPM estimate by the step

method in the large system sizes where the direct method is not available.

4. Large L cases

Firstly, we study random phase differences of type B. For L = 65, we generate 100
samples and show the heat map of the ratio of samples in which the jump inference
succeeds at all locations and that of the root mean square error (RMSE) in Fig. 9. RMSE
is defined as RMSE:\/ﬁ ZZL:]I (my —m5)2. In Fig. 10, we show the oy dependence

of the sample average of the RMSE. From these figures, we note that in the region

Vg + 02 < 1in (1o, 00) plane, the jump inference succeeds.
Next, we study the regular phase differences. For L = 50,500 and b = 3 and 5, we

show the results of jump inferences in Fig. 11. o, is 0.86, 1.43, 0.85, and 1.41, o0y s
is 0.5, 0.3, 0.6 and 0.5 for (L,b) = (50, 3), (50,5), (500, 3), (500, 5), respectively. From
these results we find that our theory is applicable to the regular phases and large L
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(a)

=
191817161514131211109 8 7 6 5 4 3 2 1 0

o
.
b3
2

012345678 910111213141516171819

012345678 910111213141516171819

0o 0o

Fig. 9. (Color) Heat map in (19, 0o) plane for type B. L = 65. Ah = 0.001. (a) Ratio of samples in

which jump inference succeeds at all locations, (b) sample average of RMSE.

0.5 | 0.5 |
of++=+++= of++=+++=

B I Y R TR S R N | 1 I Y R TR S R N |
0 02040608 1 12141618 2 0 02040608 1 12141618 2

00 00
Fig. 10. o dependence of RMSE. L = 65. Ah = 0.001. (a) no = 0.1, (b) no = 1.0.

cases. As for the optimal hyperparameters, there are several results which are different
from the small L cases. We find that h,,, becomes negative when r° becomes of order
of 0.5, and this is quite reasonable because jumps take place easier for negative h as
seen from eq. (20). 7,y increases from the small value to 2.0 almost linearly and then
takes the value 2.0 because 2.0 is the maximum value of the parameter scan. We show
the location dependences of the phase differences in Fig. 12 for L = 50 and L = 500 in

the cases that the jump inferences succeed.

15/29



J. Phys. Soc. Jpn.

(a) (b) ()

L1 ! L1
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! L L1 ! L T T R SO RO R B
112141618 2 0 02040608 1 12141618 2 0 02040608 1 12141618 2 0 02040608 1 12141618 2

00 00 00 00

Fig. 11. o( dependences of r®, the ratio of number of locations where the jump inference succeeds
to number of total locations. Step method. (a), (b) L = 50, (c), (d) L = 500. (a), (¢) b =3, (b), (d)
b=-5.

(b)

4 5
3 4
2 3
2
1
o le my;
A 0
-1 m; 4
2 2
-3 3
-4 -4
5 I I I I I I I L X 5 I I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 350 400 450 500
7 7

Fig. 12. a9 = 04,n = 4,b = 5. Step II. (a) L = 50. Notations are the same as in Fig. 5. ¢ =
0.3,E5 = 0.035,E5/E; < 0.9 and jump inference succeeds with non-zero jump. (b) L = 500. Solid
curve: m;, dashed curve: MPM estimate of m;. Corrupted and reduced phase differences are not drawn

for clear figures. o9 = 0.5, F§ = 0.025, E5/E; < 0.9 and jump inference succeeds with non-zero jump.

Now, we show the numerical results when the phase differences and the external
noises are generated from the correlated Gaussian distribution and the von-Mises dis-
tribution, respectively. We generate 10 samples of external noises for type B. In Ref. 13,
the location dependence of phase differences are shown for N = 64, = 1,3 = 5 and
h = 1073, These values of N, « and 3 correspond to L = 65,19 = 1 and oy = 1//5 ~
0.44 in our notations, respectively. As for h, we scan h = —0.1,—0.099,---,0.1 and
the scan range of other hyperparameters are the same as in the previous calculations.
In Fig. 13, we show 7 dependences of (og ;)with error bars, where bracket implies the
average over 10 samples. As L increases, (0o s) decreases approximately, as expected.

Finally, let us compare our results with previous ones. In Ref. 13, the posterior

mean (PM) method is used and the phases are inferred by taking the mean values of
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phases with respect to the posterior distribution, and the jumps are successfully inferred
except for the uniform shift. In our method, from Fig. 13(b), we note that (oo ;) ~ 0.5
at 79 = 1.0. In more details, we found that the jump inference succeeds in 7 of 10
samples for 179 = 1 and oy = 0.5. Since the performance of the jump inference depends
on samples and system sizes, it is difficult to judge whether the present method or the
method of the previous study is better. In Fig. 14, the location dependence of phase
differences is shown when the jump inference succeeds. In this case, the hyperparameters
are 7oy = 1.1, Mope = 1.0 and o,y = 0.4, and similar to the values n = 1.0 and o = 0.5,
respectively. h,,, = 0.024 is small as in the cases of the Gaussian noise when the MPM

inferences succeed with non-zero jumps.

BT 0.9

i |
<0'0,J>§:§ HHHH}HH { <00J>§§ H%H
“0 020406 0.87710 12141618 2 "0 020406 o.anl0 12141618 2

Fig. 13. 7o dependence of (0 ) with errors. (a) L = 18, (b) L = 65.

S A N O N B O ®

Fig. 14. Location dependence of phase differences. Notations are the same as in Fig. 5. L = 65,1 =
1,00 = 0.5. Step II. sample 1. B} = 1.42, E5 = 0.024.
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5. Summary and discussion

In this paper, we proposed a one-dimensional phase unwrapping model and analyzed
it by the transfer matrix (TM) method. We assumed that during the observation process
of phase differences, these are corrupted by Gaussian noises and are reduced to values
in [—m, 7). Thus, the reduced data may have discontinuities, which we call jumps, as a
function of location. In order to deal with the discontinuities, we introduced the three
state Potts model assuming that the jumps are not very big. We formulated the problem
on the basis of Bayesian inference using the maximizer of the posterior marginal (MPM)
estimate.

Firstly, we studied the case that the phase differences are generated from the corre-
lated Gaussian distribution. We proposed two methods, the step and direct methods.
In the step method, we inferred the corrupted data from the reduced data in step I,
and inferred the phase differences from the inferred corrupted data in step II. In the
direct method, we inferred the phase differences from the reduced data directly. In both
methods, we derived the expressions of the MPM estimates of the phase differences
and the posterior probabilities of the hyperparameters. We performed numerical calcu-
lations for several samples of phase differences and external noises. We compared the
performance of the step and direct methods for small values of L up to 20, because
numerical calculations of the direct method are difficult for values of L larger than 20
as explained below. Here, L is the system size, the number of locations where phases are
observed. We found that the MPM estimates of the phase differences for both methods
are comparable although the jump inference depends on samples. Next, we applied the
present theory to the regular phase differences obtained from phases generated from
polynomials. Similar to the case of random phase differences, we found that both meth-
ods give comparable results. Then, we studied the large L cases by the step method.
We studied the random phase differences for L = 65, and the regular phase differences
for L = 50 and L = 500. We found that we can infer the corrupted data and the
phase differences fairly well by using inferred hyperparameters in rather wide ranges of
noise amplitudes. The ranges depend on samples and the system sizes as in the cases of
small system sizes. Finally, we applied the step method to the case that the phases are
generated from the correlated Gaussian distributions as in our case, but the external
noises are generated from the von-Mises distribution studied in Ref. 13. We studied the

regions where the jump inference succeeds and found that in 7 of 10 samples we can
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infer the jumps successfully at almost the same parameters studied in Ref. 13. Since
the performance of the jump inference depends on samples and the system sizes, it is
difficult to judge whether the present method or the method of the previous study is
better.

Now, let us discuss applicability of the direct and step methods to large system
sizes and their computational times. The direct method is applicable to system sizes
of at most 20. This is because for the direct method the numbers of summations of
exponential functions in the formulae of the MPM estimate (eq. (11)) and the likelihood
function (eq. (18)) are extremely large. For example, the numbers are 3*~! = 3!7 =
129,140,163 for L = 18 and 3% ~ 10?%® for L = 500. No such summations exist
in the step method. For L = 18, the computational time to calculate the optimal
hyperparameters by the raster scan and the MPM estimates for one set of (19, 09) par
sample is about 503 minutes for the direct method and about 1.13 seconds for the
step method. That is, the step method is about 26,700 times faster than the direct
method. The main reason for this is that summations of exponential functions exist in
the direct method and the number of them is of order 108. Therefore, the step method
has significant advantages of applicability to large system sizes and extremely short
computational times.

We restrict ourselves to the one-dimensional model in this paper. By a similar
method to the present one, the analyses of the model which is composed of two strings,
we call it the ladder model, and the two-dimensional model are under investigation. We

will report the results of the investigation in the future.
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Appendix A: Derivation of Eigenvalues
In this Appendix, we derive the eigenvalues and the normalization factor Cj of the

correlated Gaussian distribution (eq. (4)).
L

P(m) = Chespl—gz D (ms—mi0)?) (A1)

0 =1
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L1y
O — 2 A-2
0 E 2w 770’ ( )
Im
Al:2(1—cos(f)) l=1,2,...,L—1. (A-3)
Introducing the matrix A, P(m) is written as
1
Pm) = C exp(—Q—TIQmTAm), (A4)
0
2 -1 0 0 0
-1 2 =1 0 0
o -1 2 -1 0
A = (A-5)
0 o -1 2 -1
0 0 o -1 2

a S 0 0 -+ 0
b« 0 0
0 « 0
B, - v (A6)
0 0 B8 a p
0 o 0 g
Defining b, = det B,,, it is calculated as
bn = abn—l - Ban—Qa n =3,
b = a.

Defining ¢, = b, — ub,_; for n > 2, we obtain ¢, = vc¢,_1, where u and v satisfy
u+v = a,uv = $2. That is, these are the solutions of the equation 22 — az + 32 = 0,

%(oz + y/a? — 4/32). Then, we obtain ¢, = v" 2cy, ¢y = by — ub; = v*. Therefore,

U, v =
¢, = v" for n > 2. Thus, b, = v" + ub,_1 for n > 2. From this relation, we obtain
by =Y p_ovFu""" for n > 1. Now, let us derive the eigenvalue A of the matrix A. The
characteristic equation of A is det(A\E — A) = 0, where E is the unit matrix. This is
equal to by_; = 0 with « = A —2 and = 1. Now, we show A #0 and A #4. If A =0
or A =4, we find o> = 4 and u = v = a/2 = £1. Therefore, b;,_; = Lul~! # 0. Thus,

A # 0 and X\ # 4. Then, u and v are different and are not equal to 0. Let us put u = re?
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where 7 and 6 are real numbers. It follows v = e~ /r. Thus, we obtain

L-1 L1 v\ L —2i0 /,.2\L
_ k, L—1—k _  L—1 Uk 11— () ol = (/%)
by = Dt =t (O = e = e
k=0 k=0
Note that 2 = e /72 £ 1. From b, = 0, it follows (e 2*/r*)L = 1. Thus, we
obtain r = 1,72 = eXp(Q—”lz) 1=1,2,---,L—1. Therefore, u; = ¢ = exp(—’%z’),l =

1,2,---,L — 1. From the relation u + v = A — 2, we obtain \; = 2 + e + e =
2+ 2 cos(2!). By changing the label [ to L — I, we obtain A, = 2(1 +cos(”(L D)) =2(1—
cos(2)). As easily checked, the normalized eigenvector ¢, belonging to A = 2(1—cos(2}))

L
is given by
sin (kf)
2 Ik |
t, = T sin () (I th row)
sin (7@11)“)

Defining U = (t1,ty,- -+ ,t;_1) and v = UTm, we obtain m*Am = ZlL:_ll Nv?. Thus,
we obtain
1 - [21
cyto= /dmexp ———mTAm| = /d'v exp|— —10.

Appendix B: Derivation of conditional probability

Here, we derive the conditional probability P(7|x;), eq. (9). Since y; = o + 2z, =
71 + 27ny, the joint probability distribution of 7; and n; is given by
1 (11 + 2mn; — x7)?

P(m,n|z) = P(n+2mn|z,o0) = N exp[— 52 . (B1)
Thus, we obtain
1 > 1
P(n|x ex T+ 2 — x7)°|. B-2
(1] 71) Zwan;;;) p[— 552 (T L — x1)?] (B-2)

The normalization of P(7|z;) is shown as follows.

4 1
/ P(n|z)dn, = Z / exp|— Tl + 27y —xl) |dm

™ L —
1 (2nl+1 1
= Z / eXp (tl — SL’[) ]dtl
271'(7 (2n;—1)m 202
1

& 1
_ / expl—og (1 — )it = 1,

2ro
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where t; = 7 + 2mn,.

Appendix C: Derivation of marginal distributions

for direct method

Firstly, we give several expressions of concerned variables in the following.

1 !/
P(rlz)P(x) = C N en
(r]2) P(x) (72 2
1 L—1 1 L—-1
M = gz (2 n)f s S (= )

=1

=0

2 = [ipempe) = oy [

L—1
“Hn = N
€ = l($l7ﬂfl+1,nl),
1=0
1 2 1 2
77(Tl+27{'n171’l) 77(2}3[71’[+1)
\Ill(xhlerlunl) = e 2° 2n° ; l= 17 7L_27
_ 12
Uo(x1) = e 2771,
1
2 2
Uy i (xp—1,np-1) = eXp[—T‘Q(TLq + 21 — 1) — 2—7724%—1]7

where 2y = x7, = 0. For later use, we define u;(x;), di(z;), a}', a etc. as follows.

u(ry) = Yo(x1),

W (T41) = /d$l‘l’z($z,$z+1,nz)uz($l)

u 2
a x x
— /d;z:l exp[——la:l2 + (% + fHx — ata 21

2 2n?
del(fol) = \I’L71(SL’L71, nLq),

dlfl<xl71) = /dﬂfl‘l’l1(ﬂfl1,$€l7nl1)dl(~”€l)

2

ad T x?
— /d;z:l exp[—?lxl2 + (% + fld):vl — #

Now, let us calculate the marginal distributions.

P(x|T) = %f(v%h)Llé;/dﬂ”wm_H”)
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1 /
= (C(— L=l /dﬂfz d.ﬁL’Z Ui\ Ti— dz ZT;
<\/ﬁg> ; 1 +1 1( 1) +1< +1)

X‘I’z’q(%zeh Ti, nzel)‘l’z'(ﬂfza Tit+1, nz)

1 L—-1 /
C ), [=2,3,-- [ —2,
(m) 2_salan,m)

1 1\t 1 1\t
P - —C d =0 —-
mm = 7075 2@ m =7 () 2_palonm)

1 1\ 1 1\
P(ZL‘L_1|T) = Z_dc(\/ﬂo-) ;UL_l(I‘L_l,n)EZ—dC( ) Zn,:,uL_l(fL'L_

2ro

Since py(z;, n)s are all Gaussian distributions, we denote them as

L1, 2 (Y (T
pu(r,m) o emat I (C-10)

where al( and cl(n) depend on n.. For any [ among 1,2,3,---, L—1, Z4 is expressed

as

Zd = /dl‘lp(l‘l|‘l') :C(\/QI_WU)le/dl‘l,ul(l‘l,n) (Cll)

(bl(n)>2 +c§n)

1 L=t 21 21 | < 21 )
() [ e
2ro }:[l ay lell a? ; al(")

al(n), bfn) and an) are defined as follows.
1 1 2 1
al(") = - — 4 =+ (122,. ,L—2),
My My, N0
m) 1 2 1
T T, R
pn) fgd n 71 + 27N,
1 nPag o2
u d
2
bl(n) _ 5!;1 + 514:11 +Tl+27Tnl (l:27 ,L_Q)’
ma_y N, o
pm) Ji—2 To—1+ 2mnr 4
LT gy g ,
o By (it 2mm)?

! 2ad 202 ’
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u 2 d )2 2
w  )® | (R pooopd (1 + 27ny) =9 ... -9
“ 24}, * 2a5l, | e 2072 (t=2-, )
u 2 2
. ) L 2mny
d, = Uil gy 20
2a7 _, 20

From egs. (C-1) - (C-6), the following recursion relations for af!, al etc. are obtained.

17

1 2
ai = af_, = PCRLENCY
o n
u T1 +27T77,1
f1 = 77
d Tr—1 +2mng_;
fol = 0_2 )
g _(7‘1 + 2mny)?
- 202 ’
hd _ _(TL,1 —|—27TTLL,1)2
L—1 20_2 )
u 1 2 1 .
a’i-i—l = §+?_774—a;1 (Z:L"',l—Q),
1 2 1
d _ S
ay = §+ﬁ_774? (i=1+2---,L-1),
u Tiv1 + 21 ,
i+l o2 +T]2(1,%1 (Z:]-a"'al_2)a
" Ti—1 + 27N f .
fifl = 0_2 +?726Ld (Z:l+27aL_1)a
(Tix1 + 2mnig1)? (f)? -
P i By (=1, ,0—2
i+1 o2 + 20%1 + [ (Z ) ) )7
i— 2mn;_1)? d)2
h?—1 _ _(T 1+ 2mn;_q) +<fl(>i —i—hf (i=1+2---,L—1).
o? 2a

Appendix D: Derivation of MPM estimate for step method, step I

We rewrite Hy as

where £ and Y are given as follows.

L-1
L= (CLZ'SZ' + bZS? — Ci8i8i+1>7
i=1
1 L
Y - 2?72 ;(Tz Tz—l) )
2
Qi = —~—72T(27'z' —=Tit1 = Tie1), (i=1,---, L —1),
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42
4%
Ci:_?7 (Z:17"' 7L_2)7 Cr—1 = 0. <D6>

Let us denote the summation of s; = 0, +1 as Tr;. Then, the partition function Zj is
Zi = Trp Trp o -Tre M =eYTr, 1 Trp o Tre”. (D-7)

Let G; be the term which includes s; and G; be the other terms in L.

L = G +G. (D-8)
We define £; as
L-1
El = Z (aisi + bZSlz — Ci8i8i+1). (Dg)
i=l+1
Thus, we have
g1 = ay181 + blS% — C15189, 61 = El. (DlO)

Note that £ = Ly, L;_1 = 0. Tr; €9 is given by
Tr; e9* = 1+ 2" cosh(a; — ¢153). (D-11)

Since s; = 0, £1, we obtain

eP% =1 +sinh(B)s; + (cosh(B) — 1)s?, (D-12)
1+ Acosh(B + Cs;) = DePsitFsi, (D-13)
where
D = 1+ Acosh(B), (D-14)
- e (015)
R L e A
Now, we use the TM method. For [ = 2,-- -, L, we successively define G, + G, as
Tre9 49 = Dyt 1 =123 ... L—1. (D-17)
Thus, we obtain
G =wsi+us; —wsisper, L=1,-++ L —1, (D-18)
G=L,1l=1--,L—1, (D-19)
(ug, v, wy) = (g + Eyq,bp + Fio1,¢), 1 =2,--+ | L —1, (D-20)

25,29



J. Phys. Soc. Jpn.

where we define

D, = D(uj,v) =1+ 2e" cosh(w), { =1,---,L—1, (D-21)
1 D(ul —wl,vl)
E,=FEu,v,w)==-In——m=. 1=1,---,L —1, D-22
! ( b l) 2 D(ul+wl,vl) ( )
1 D(ul —wl,vl)(D(ul+wl,vl)
l (ulavlawl) 92 n D(ul,vl)Q ) ; )
(D-23)
From eq. (D-10), we have
(u17U17w1> = <a17b17cl)- <D24)
Thus, we obtain
Zr = €' DyDyDs---Dy_sDy_.

Let us denote the mapping (D-20) as

ul+1 = a'l—f—l + G(ul), l = 1, 2, s ,L — 2, (D25)
U = (Uz,vz,wz)T, a; = (a, b, Cl)T, (D-26)
G(w) = (E(w), F(w),0)T, (D-27)

where u;, a; and G(u;) are column vectors and T denotes the transpose. We obtain

w;, = Cl:_~—27 lzl,"'7L—2, <D28)
wr—-1 = Cr-1= 0. <D29)
The average values of s, and s (r =1,---, L — 1) are calculated as
(s,) = —Trp_Trp_o---Try(s.e” ™)
Zy
9 = 1 9D,
= InZy = — D-30
ou, e ; Dy, Ou,’ ( )
0 — 1 0Dy
2y = mZ =) ——. D-31
(sr) v, net Z: Dy, Ov, ( )
In order to estimate (s,) and (s?), the expressions for %—Zf and %% are necessary. These
are given as
0Dy, 0Dy _ _
5 9 o = Du ) 7Dv )
< ou;’ Ouy ) (Dultas ve), Dol 1)
xdG(uk,l)dG’(uk,Q) s dG(ulH)dG(ul), <D32)
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(1<I<L—-1,1<k<L-1),

where

- oD

Du(wv) = 22U oG, (D-33)
ou

_ D

Dy(u,v) = %z%”cosh(u), (D-34)
dE(U)  IE(W)

dG(u) = ap%) aF%) ,u = (u,v,w). (D-35)
ou ov

Appendix E: Derivation of MPM estimate for step method, step 11

Let us calculate (x;). —Hy is rewritten as

_HH = ‘C - Y7 (El)
where

L-1

L= <—§SC,2 + bix; + Cﬂ?il’iﬂ)a (E-2)
=1
=

Y = — 2 E-3
5 Zy (E-3)
1 2 )

CL@'_E ?Ia(z:lf"a[’_l)v (E4)
1 ) 1 .

bzzgyl(lz]wv‘[’_l)? Ci:ﬁ(lzl’...’L_Q)’ CL—1:O’ (E5)

Let F; be the integration operator with respect to z;. Then, we have
Fr10Fpg0--File™M] =e Y F_10F_o0--- Fi[e“]. (E-6)
In £, let G; be terms which include z; and G; be other terms.
L = Gi+Gi. (E-7)
We successively define G; + G, (l=2,---,L) as
Fi[e9t9] = Aje9t9n =12 ... L—1, (E-8)

where G, consists of terms which have z; and G; consists of other terms. Thus, we have

Uu
gl = _513:[2+Plxl+uﬂxlxl+lv l:27 7L_ 17 gL 207 <E9>
-1 L-1
_ 5 p? 5, =% P;
== ,C v l == 2 e L - ]_ - : ElO
gl [+ £ 2ui7 ) ) ) gL - QUZ" ( )
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2
A=y l=1, L1, (E-11)
Uuj

up =ay, P ="0b, w =c¢, (E'12)

2
Pw
(wn, Brywn) = (a — DL gy g 2Ly 9 L1, (E-13)
Up—1 U1

We obtain the following relations.
1

wl:Cl:_2,l:].,"',L—2, wL—lch—lzo, (E14)
n
L = glw), L= 1, L2 (E-15)
u = qQ— —— = u o oo _ .
+1 7]4U1 gluy), ) ) 5
11
P :bl+1+—2—Pl, l=1,--- L —2. (E.l@)
n-w

In order that the integration by x; converges, u; > 0 should hold forl =1,--- , L—1. Let

us prove this. Since a = J% + n%’ we have u; = a > 0. The fixed points of the mapping
w1 = g(w) are uy = 3{a £ ,/a®— (772—2)2} Both solutions are real and positive, and

u, is stable and u_ is unstable. Since u; < a = wuy, u; is positive and monotonically

decreases, and tends to uy as [ — oo. This completes the proof. Therefore, we obtain
L—1 PZ?
Zu = e YAy Ap oAy et T (E-17)

By a similar procedure, we derive the expression of the average (z,) as

(v,) = n2§<ﬁ

k=r “m=r

)Pk. (E-18)

1
Uy

where we define 4; = n%u;.
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