
Typeset with jpsj3.cls <ver.1.1> Full Paper

Crack Growth and Plastic Relaxation in a Drying Paste Layer

So Kitsunezaki ∗

Department of Physics, Graduate School of Human Culture, Nara Women’s University, Nara 630-8506, Japan

Uniform drying causes a quasi-two-dimensional cellular crack pattern in a thin layer of paste. In our
previous research, we found that such cracks are created in a capillary state, and that the growth speed is
determined by the rate of increase in tension in the layer, rather than by the magnitude of the tension itself.
In this paper, we present a theoretical investigation of the effects of increasing negative pore pressure and
plastic deformation on crack growth using a modified spring network model. The analytical and numerical
results indicate that the stress-rate dependence of crack speed could be caused by the competition between
plastic relaxation and crack growth.
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1. Introduction
When a thin layer of paste is dried uniformly on a rigid

plate, increased tension in the layer results in a familiar quasi-
two-dimensional crack pattern. Cracks are generated sequen-
tially during the middle stage of drying, and grow slowly at
approximately constant speeds. The growth speed depends
significantly on the material composition of the paste. For ex-
ample, the range of speed was reported to be 0.2− 2 mm/min
for mixtures of water and coffee powder,1) and 2 − 200 mm/s
for cornstarch slurries.2, 3) Although there have been numer-
ous investigations of the formation of crack patterns in paste,4)

crack growth processes have not been sufficiently clarified.
Prior to crack formation, the drying paste used is in a

semisolid state, and exhibits viscoplastic behavior. It fluidizes
when stresses in excess of the yield stresses are applied.5)

Recent studies of the memory effect of paste indicated that
rheological properties are important factors in fracture pro-
cesses.6–8)

Our previous experiments revealed that crack growth in
paste is driven by tension increments.9) In those experiments,
a thin layer of fine calcium carbonate powder (CaCO3) and
water was dried from the open top surface at various drying
rates. We measured the growth speeds of individual cracks
from photographs, while the tensions arising in the layer were
estimated from the deformation of a flat spring attached to
the lateral boundary. The growth speed ranged from 5 to
50 mm/min and differed significantly among cracks gener-
ated at the same water volume fraction, while the tension
was determined by the water volume fraction. The speed was
found to be a nonlinear increasing function of the drying rate,
or the rate of increase in the tension at the time of crack for-
mation. No such dependence appears in pure viscoelastic ma-
terials. In a uniform layer of viscoelastic material subjected
to gradually increasing tension, crack growth begins when a
certain amount of elastic energy is stored, and accelerates to
a speed determined by the tension. Although we were able to
discuss some crack growth mechanisms in our previous work,
especially the possibility of plastic relaxation in the vicinity of
the crack tips, we were not able to ascertain the specific local
processes involved.

In this paper, we take into account the fact that negative
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pore pressure on the free surface of paste can cause plastic re-
laxation as well as cracking. Such plastic relaxation can occur
globally in a semi-soild paste. We devised a simple network
model of rheological elements by modifying a spring network
model to incorporate plasticity and negative pore pressure.
The analytical and numerical results indicated that the dry-
ing rate dependence of crack growth could be caused by the
competition between plastic relaxation and crack growth.

We focus on the growth of a semi-infinite straight crack in
a paste layer with a uniform water distribution, and then intro-
duce the model in the following sections. The analytical so-
lution for steady crack growth under negligible yield stresses
is derived in §5, and numerical results for finite yield stresses
are presented in §6. A discussion and a summary of the con-
clusions drawn are presented in §7.

2. Rheological Model for a Paste Layer
Let us investigate a semi-infinite straight crack in a uniform

paste layer of thickness h, as depicted in Fig. 1, where the
crack grows in the x-direction and X(t) indicates the crack
tip position. Symmetry with respect to the x-axis is assumed,
so that we need to consider only the half plane y ≥ 0 in the
analysis.

We begin by incorporating the effect of negative pore pres-
sure into the free energy of the paste. Negative pore pressure
increases while drying and induces contractions in the cap-
illary state,10–14) and the compressive stress P(t) due to the
pressure is supported by the granular structures on the free
surfaces of the paste, as shown schematically in Fig. 2. We
assume that the water distribution is uniform throughout the
layer and neglect the effects of desiccation except with regard
to increasing pore pressure, as there is only a slight decrease
in the amount of water during the growth of a single crack. In
this paper, P(t) is regarded as a temporally increasing param-
eter with respect to drying.

Negative pore pressures are caused by the water-air inter-
face on the free surfaces. Therefore, the sum of the interface
energy Fi and the bulk energy of the paste Fb is equal to the
entire free energy of the paste layer: F ≡ Fb+Fi. The changes
in Fi and the paste volume v are related to P(t) by dFi = Pdv
when no crack forms. Pdv can be interpreted as the work per-
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Fig. 1. Semi-infinite straight crack in a paste layer with a free top
surface and a fixed bottom. X(t) indicates the crack tip position and
V(t) ≡ Ẋ(t) is the growth speed.

P(t)

Fig. 2. Schematic of a capillary state of a paste and
compressive stresses caused by negative pore pres-
sures while drying.

formed on the bulk of the paste by the compressive stress.
The granules and water in the paste are both practically in-
compressible for many types of paste. When the desiccation
of water is negligible, the change in v is caused mainly by the
invasion of air in the vicinities of the free surfaces.

As the crack growth creates new surfaces, when a crack is
growing, we assume that dFi = Pdv + GchdX, where Gc de-
notes the Griffith energy (the energy required to generate a
unit area of crack surface). For irreversible crack growth, the
interpretation of Gc should be extended to include the local
dissipation energy at the crack tip, in accordance with stan-
dard fracture mechanics.15)

Fb and v are functions of the state of the paste, S, and the
energy dissipation rate Ḟ is determined by the time derivative
Ṡ. Thus, we assume that

Ḟ(S, Ṡ; X) = Ḟb(S; X) + Pv̇(S; X) + hGcẊ, (1)

for paste with a crack, and this equation provides the basic for-
mulation for the time development of S and X. In continuum
theories of paste, S is generally described in terms of stresses
and plastic strains. Plastic strains cause major deformations of
paste in many instances, as the elastic strains are quite small
owing to the weak yield stresses. We assume that plastic de-
formation is incompressible and consider only elastic volume
changes.

In the following sections, we adopt a modified spring net-
work model to construct Fb and v. The simplest dissipation
function is used for Ḟ, and elastic strains are used in place of
stresses for convenience.

3. Modified Spring Network Model with Plasticity
We modify a spring network model to construct Fb and

v. Spring network models represent a thin paste layer as a
two-dimensional spring network connected to a fixed bot-
tom by other springs, and springs that have been removed
represent cracks. Such models have been used in numerous
studies of mud crack patterns, although paste has generally
been regarded as an elastic or viscoelastic material.4) Figure
3 shows our network model composed of rheological ele-
ments, in which the layer is discretized into square meshes
with a size ax × ay via xi = axi and y j = ay( j − 1/2).
For simplicity of analysis, the horizontal displacements are
limited in the y-direction, and indicated by the scalar vari-
ables ui j(t). This model allows three strain modes for ui j(t)
at a given point: shear strains in the x- and z-directions, and

dilation in the y-direction. We abbreviate these as (∇u)i j ≡
((ui+1 j − ui j)/ax, (ui j+1 − ui j)/ay, ui j/h).

Paste responds viscoelastically to small stresses due to
repulsive interactions among granules. Assuming a linear
elastoplastic decomposition, the elastic strains are expressed
as ei j ≡ (∇u)i j − si j, where si j ≡ (sxi j, syi j, szi j) indicates the
plastic deformations corresponding to the three strain modes.
On the basis of the assumption of linear elasticity, we set

Fb =
1
2

∑
i j

′
axayh(µe2

xi j + Ke2
yi j + µe

2
zi j), (2)

where K and µ are the elastic coefficients for dilation and
shear strains, respectively. The symbol

∑′ denotes the sum-
mation excluding the elements in the y-direction along the
crack.

The paste volume is approximated by

v =
∑

i j

′
axayheyi j + const., (3)

taking into account elastic volume changes. We have not in-
cluded the elastic dilation in the z-direction in eqs. (2) and (3),
as it is independent of the horizontal displacements in spring
network models.4) The vertical displacements are considered
implicitly, as plastic deformation has been assumed to be in-
compressible. This means that the layer thickness changes
with syi j to maintain the layer volume.

We derive the continuum limit of these equations in the
x-direction as ax → 0, while retaining a discrete configura-
tion in the y-direction to obtain the failure condition at the
crack tip. To express these equations simply, we scale the
coordinates and displacements using xi → hx, y j → h′y j,
and ui j(t) → uu j(x, t), respectively. Choosing h′ ≡ h

√
K/µ,

eqs. (2) and (3) can be rewritten as

Fb =
1
2

∫
dx

∑
j

′
ae2

j , (4)

v =
∫

dx
∑

j

′
aey j + const., (5)

where e2
j ≡ e2

x j + e2
y j + e2

z j, a ≡ ay/h′ and

e j ≡
(
∂u j

∂x
,

u j+1 − u j

a
, u j

)
− s j. (6)

The other variables have been transformed according to Fb →
γh2Fb, v → uh2v, and (hsxi j, h′syi j, hszi j) → us j(x, t), where
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Fig. 3. Spring network model for a paste layer fixed at the bottom. A
straight crack exists between j = 0 and 1 for axi < X(t). The mesh
size ax in the x-direction vanishes in the continuum limit.
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Fig. 4. Rheological elements at each site. The symbols X
and Z denote elements similar to Y , composed of a spring
and two dampers.

γ ≡ (Kµ)
1
2 u2/h is the unit of surface energy density. The scal-

ing constant u can be chosen arbitrarily, and is used to sim-
plify the failure condition in our numerical simulations. Equa-
tion (1) does not change, aside from replacing h with 1, since
X → hX, P→ γP/u and Gc → γGc.

4. Time Development with Dissipation
We first assume the simplest quadratic form for dissipation:

Ḟ = −
∫

dx
∑

j

′
a
(
τė2

j + τpṡ2
j

)
. (7)

The first term describes viscous dissipation with a single re-
laxation time τ, and the second term corresponds to plastic
dissipation with a relaxation time τp, where we have neglected
the yield stresses of the paste. We can set τ = 1 without the
loss of generality by adopting τ as the unit of time. We may
assume that τp � 1, as plastic relaxation is markedly slower
than viscous relaxation.

Equations (1) and (4)-(7) determine the time development
of u j(x, t), s j(x, t), and X(t) for a given P(t). After a cum-
bersome, but straightforward calculation (summarized in Ap-
pendix A), we can compare the coefficients of u̇ j, ṡ j, and Ẋ
individually, assuming that the boundary conditions for the
region y > 0 are

u0(x, t) = −u1(x, t) on the x-axis
u j(x, t)→ 0 for x→ ∞ or j→ ∞
ex j(x, t)→ 0 for x→ −∞

. (8)

Introducing new variables (U j,S j) ≡ (1 + ∂/∂t)(u j, s j), we
obtain the basic equations

LU j =
∂S x j

∂x
+

S y j − S y j−1

a
− S z j for j > 1, (9)

τpṡ j = f j for j ≥ 0, (10)

with the stress boundary conditions on the x-axis given by

σ =

{ 2U1
a − S y0 for x ≥ X(t)
−P for x ≤ X(t)

, (11)

and the failure condition at the crack tip x = X(t) given by

a
4

(
2u1

a
− sy0 + P

)2

= G′c. (12)

Here, we have defined G′c ≡ Gc + a2P2/4,

LU j ≡
∂2U j

∂x2 +
U j+1 + U j−1 − 2U j

a2 − U j, (13)

�pP

t
Pc

P(t)

Fig. 5. Change in vp in the case of a linearly increasing P(t).

f j ≡
(
∂U j

∂x
,

U j+1 − U j

a
+ P(t), U j

)
− S j, (14)

and

σ ≡ U2 − U1

a
− S y1 + a

(
∂2U1

∂x2 −
∂S x1

∂x
− U1 + S z1

)
. (15)

Equations (9) and (10) are equivalent to the rheological model
composed of three mechanical elements, a spring and two
dampers, shown in Fig. 4. Viscous dissipation causes the re-
laxation of u j toward a natural elastic state U j determined
by the semidiscrete Helmholtz equation eq.(9). On the other
hand, plastic deformation, described by eq. (10), causes the
relaxation of s j toward the state (1 + ∂/∂t)e j = (0,−P(t), 0),
which is an isotropic stress state, since the paste layer is also
subjected to the vertical compressive stress P(t).

The failure condition eq. (12) is obtained because discrete-
ness in the y-direction prevents a stress singularity at the crack
tip. We infer that such discreteness is essentially caused by
grains in the paste, and a is the order of the magnitude of the
ratio of grain size to layer thickness. Under general experi-
mental conditions, G′c ' Gc since a � 1. The failure con-
dition implies that G′c is compensated for the energy of the
bond that was broken at the crack tip. We note that P(t) also
appears in the condition. This is because crack progression
changes the local state at the crack tip to an isotropic stress
state, as P(t) acts on the crack surface as well as on the top
surface, as indicated in eq. (11).

5. Analytical Solution for Steady Growth
Elastic energy is stored when the compressive stress P(t)

increases and is dissipated by plastic relaxation. Thus, cracks
can use only the remaining energy for growth. The uniform
solution of eq. (10) for the initial conditions s j(x, 0) = 0 rep-
resents a state far in advance of a growing crack. By assuming
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that U j(x, t) = 0 everywhere, we can obtain the uniform solu-
tion

s j(x, t) = (0, P(t) − (τp + 1)vp(t), 0) ≡ su(t), (16)

where

vp(t) ≡ 1
τp + 1

∫ ∞

0
dη [P(t) − P(t − (τp + 1)η)] e−η. (17)

The remaining elastic energy is determined by vp(t), and
τpvp(t) then provides the driving force for the crack, as will
be shown later. When P(t) increases monotonically,{

τpvp ' τpṖ for τpṖ � P,
τpvp ' P otherwise, (18)

as Fig. 5 indicates. For example, if P(t) increases linearly from
zero,

vp(t) = Ṗ
(
1 − e−

P(t)
(τp+1)Ṗ

)
(19)

for t > 0 and a given increasing rate Ṗ.
For a given constant vp, the analytical solution can be ob-

tained for the steady growth of a semi-infinite crack. We in-
troduce the moving coordinate ξ ≡ x − X(t) determined by
crack growth at a constant speed V ≡ Ẋ, and rewrite the ba-
sic eqs. (9)-(15) using the new variables, s′j ≡ s j − su and
S′j ≡ (1 + ∂/∂t) s′j = (S x j, S y j − P + τpvp, S z j). In eqs. (9) and
(13), S j and x are simply replaced with S′j and ξ, respectively.
The other equations are altered as follows:

S′j − τpV
∂s′j
∂ξ
=

(
∂U j

∂ξ
,

U j+1 − U j

a
, U j

)
, (20)

σ′ =

{ 2U1
a − S ′y0 for ξ ≥ 0
−τpvp for ξ ≤ 0

, (21)

a
4

[
2u1

a
− s′y0 + (τp + 1)vp

]2

= G′c at ξ = 0, (22)

where

σ′ ≡ U2 − U1

a
− S ′y1 + a

(
∂2U1

∂ξ2
−
∂S ′x1

∂ξ
− U1 + S ′z1

)
. (23)

These equations do not contain P(t) explicitly.
We can solve these equations by the Wiener-Hopf

method16) (summarized in Appendix B) to obtain the crack
speed (B·15) . For τp � 1 and a � 1, we find that the crack
grows when τpvp > τpv∗p '

√
2G′c, and the growth speed is

determined by

V ' a
2

(vp

v∗p

)2

− 1

 (24)

for v∗p < vp � v∗p
√

2/a. Combined with eq. (18), eq. (24) in-
dicates that the crack speed is determined by Ṗ for τpṖ � P,
and that cracks can grow only when Ṗ > v∗p, as the maximum
vp is Ṗ.

These results qualitatively agree with the features of crack
growth that were observed in our experiments. In particular,
in the case where v∗p is sufficiently smaller than Ṗ, the onset
of growth is determined by P, while the crack speed depends
on Ṗ, rather than on P. Returning to the original scales, cracks

start growing at a certain critical pressure,

P∗ ' τpv∗p '
(

2Gc
√

Kµ
h

) 1
2

, (25)

and then accelerate to the speed

V '
√
µ

K
ay

2τ

(τpṖ
P∗

)2

− 1

 , (26)

as P(t) increases beyond τpṖ.

6. Numerical Simulations for Finite Yield Stresses
We carried out numerical simulations to confirm the ana-

lytical results and investigate the effect of finite yield stresses.
Here, we assume Bingham-type constitutive equations for in-
dividual network connections in the x-, y-, and z-directions,
replacing eq.(10) with

τpṡ j = (Y( fx j),Y( fy j),Y( fz j)), (27)

Y(x) ≡


x − Fc for x > Fc

0 for |x| < Fc

x + Fc for x < −Fc

.

This is equivalent to replacing τpṡ2
j with τpṡ2

j+Fc(|ṡx j|+ |ṡy j|+
|ṡz j|) in eq. (7). Here, we assumed that yielding is a purely dy-
namic effect;8) that is, the functions of Fb and v are indepen-
dent of Fc.

For a monotonically increasing P(t) exceeding Fc, the uni-
form solution of eq. (27) approaches

s j = (0, P(t) − Fc − (τp + 1)vp, 0) (28)

with time. For finite yield stresses and τp � 1, we therefore
expect that τpvp + Fc provides the driving force for steady
growth in place of τpvp.

In the numerical simulations, we solved the basic equations
eqs.(8), (9), (27), and (11)-(15) in a rectangular moving re-
gion with −Lx < ξ < Lx and 0 < y < Ly. Equation (9)
was solved directly by calculating the inverse matrix,17) and
eq. (27) was solved by the Euler method with the time mesh
∆t, which was changed adaptively so that the intervals of suc-
cessive crack progressions were longer than 4∆t. The uniform
solution was also calculated to obtain the boundary condition
ahead of the crack. The crack progression times at the tip were
obtained from eq. (12) with accuracy on the order of (∆t)2,
and for every crack progression, all fields were translated by
−∆x in the x-direction, using parabolic interpolation. For the
sake of achieving good numerical performance, we again dis-
cretized the equations on a rectangular perimeter lattice with
(2I + 1)× J grids, where the grid size increased exponentially
as ∆xi × ∆y j ' ∆xe|i−I|/4 × ae j/4 from ∆x × a at the crack tip
(i, j) = (I, 0).

All the results in Figs. 6 and 7 were obtained for a = 0.02,
∆x = 0.002, τp = 100, and (I, J) = (24, 18), which corre-
sponds to the system size (Lx, Ly) ' (5.0, 4.9). We have as-
sumed that 4G′c/a = 1 by choosing an appropriate scaling
constant u.

Figure 6 shows the time development of the crack tip po-
sition under a linearly increasing pressure P = Ṗt (t ≥ 0) for
Fc = 0 and Fc = 1. These are consistent with the analytical
results shown in §5. For Fc = 0, cracks can grow only for
large Ṗ, and the crack speed settles into the value determined
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Fig. 6. Crack tip positions X(t) for linearly increasing pressures
P(t). Solid and dashed lines represent the respective numerical
results in zero yield stress (Fc = 0) and nonyielding cases (Fc =

1).
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Fig. 7. Growth speeds at a given X are plotted with respect to P
for Fc = 1 and with respect to τpvp in the other cases. τpvp is
given by eq. (19) for linearly increasing P(t), and is calculated
using eq. (28) for decreasing dP/dt.

by Ṗ. On the other hand, for Fc = 1, cracks always grow for
Ṗ > 0, and the speed increases as the pressure increases. At
the onset of crack growth, the pressure is approximately the
same in all cases.

Fc = 1 corresponds to purely viscoelastic cases, as plastic
deformation is absent virtually everywhere. Hence, the results
agree with what occurs when τp → ∞. In this case, the driving
force of crack growth is the pressure P(t), which is τpvp for
τp → ∞.

Figure 7 shows the crack speed with respect to τpvp(t) or
P(t). The results for Fc = 0 and Fc = 1 were obtained for a
linearly increasing P(t), as shown in Fig. 6. The data are plot-
ted with respect to τpvp(t) for Fc = 0 and with respect to P(t)
for Fc = 1. Both sets of data agree with the theoretical curve
obtained using eq. (24) represented by the dotted line. Thus,
we have confirmed that the crack speed is determined by τpvp,
which depends on Ṗ in viscoplastic cases, and corresponds to
P in viscoelastic cases.

Crack growth is faster for finite yield stresses than for
Fc = 0, and exhibits hysteresis. In Fig. 7, the results are plot-
ted with respect to τpvp(t) for Fc = 0.2. Under conditions
of linearly increasing pressure, cracks can grow only when
τpvp is larger than 0.03 (indicated by the arrow), and long dis-
tances are required to achieve stationary growth. On the other
hand, the crack speed decreases continuously with τpvp when
dP(t)/dt decreases gradually, as indicated by the solid line in
Fig. 7. This line corresponds approximately to the crack speed
in the stationary state. We confirmed that this line is in close
agreement with the theoretical curve obtained using eq. (24)
by applying a parallel shift of Fc = 0.2 along the τpvp axis.

7. Discussion and Conclusions
In conclusion, the competition between two stress relax-

ation mechanisms (crack growth and plastic deformation)
causes the drying rate dependence of crack growth. Cracks
in paste that is subject to linear plastic relaxation grow when

τpṖ is larger than the critical value v∗p, and the speed is de-
termined by τpṖ using eq. (24) or (26) in our model. For a
large τp, the transient region exhibits viscoelastic growth be-
fore settling into steady propagation, in which cracks acceler-
ate as pressure increases beyond a critical pressure P∗ ' v∗p.
Finite yield stresses allow cracks to grow for smaller values of
Ṗ as Fc increases. Under steady propagation, the crack speed
is determined by replacing τpṖ with τpṖ+ Fc in eq. (26), and
the crack growth changes to viscoelastic for large Fc values.
These results are qualitatively consistent with the results of
our experiments.

A quantitative comparison with the experimental results is
difficult at present owing to a lack of information on the me-
chanical properties of paste during crack formation. µ, K, τp,
and Fc generally increase with drying. Rheological measure-
ments for various water volume fractions will yield the values
of µ/K and τ in the viscoelastic region, and those of τp and
Fc in the plastic region.

The results of our experiments on CaCO3 paste suggest that
Fc was close to P∗ at the onset of crack formation. Cracks
were estimated to occur at P∗ = 104−105 Pa in the range of the
rate of pressure increase, Ṗ(v f (t)) = P′(v f )v̇ f = 2 − 120 Pa/s,
where v f is the water volume fraction. On the other hand, the
relaxation time τp should have been less than 10 s, as the
cracks stopped growing as soon as further desiccation was
prevented by covering the container with a lid.9) Therefore,
we infer that τpṖ � P∗, and Fc ' P∗ is then required in
order for cracks to grow. Although it is beyond the scope of
this study to investigate the relationship between Fc and P∗,
the modified form of eq. (26) for a finite yield stress can be
approximated by

V '
√
µ

K
ay

2τ

(τpṖ + Fc

P∗

)2

− 1

 ' √
µ

K
ay

τ

τpṖ
Fc
, (29)

if Fc ' P∗. Hence, V is expected to show a linear dependence
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on Ṗ. Our experiments indicated a weaker nonlinear depen-
dence of V on Ṗ. This discrepancy may be due to the sim-
plification used to construct Fp and v, and the assumption of
Bingham-type plasticity. Although our spring-network-based
model has been used intuitively in qualitative discussion, a
more accurate theory is required.

In addition to viscoelastic fracture and quasi-static fracture
controlled by water distribution, in this paper, we suggested
a new type of fracture in which cracks grow dynamically by
competing with global plastic relaxation. Some experiments
have indicated that crack speed varies significantly depending
on the material composition of the paste. It would be inter-
esting in future studies to investigate whether this variation is
responsible for the crack growth type.
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Appendix A: Derivation of the basic equations
The summation in eqs. (4) and (5) must be handled care-

fully, so that elements in the crack are excluded. For example,
the sum in eq. (4) is defined as∫

dx
∑

j

′
ae2

j ≡
∫ ∞

−∞
dx

∞∑
j=1

ae2
j +

a
2

∫ ∞

X(t)
dxe2

y0 (A·1)

for the half plane y > 0. The time derivative

d
dt

∫
dx

∑
j

′
ae2

j = 2
∫

dx
∑

j

′
ae j · ė j −

a
2

e2
y0

∣∣∣
x=X

Ẋ (A·2)

is substituted into eq. (1), and the same procedure is per-
formed for eq. (5). The coefficients of u̇ j, ṡ j, and Ẋ are ob-
tained from eq. (7) after integrating by parts, as follows:∫

dx
∑

j

′
ae j ·

(
∂u̇ j

∂x
,

u̇ j+1 − u̇ j

a
, u̇ j

)

= −
∫ ∞

−∞
dx

∞∑
j=2

(
a
∂ex j

∂x
+ ey j − ey j−1 − aez j

)
u̇ j

−
∫ ∞

−∞
dx

(
a
∂ex1

∂x
+ ey1 − aez1 − ey0Θ(x − X)

)
u̇1, (A·3)

where Θ(t) is the Heaviside step function. Here, we used the
boundary conditions (8).

Appendix B: Wiener-Hopf analysis
We apply the Fourier transform defined by

X̂(k) ≡ 1
2π

∫ ∞

−∞
dξX(ξ)e−ikεξ, kε ≡ k + iε, (B·1)

for a small positive ε. ε is ultimately made to approach zero.
From the definition of (U j,S′j), (Û j, Ŝ′ j) = (1 − ikεV)(û j, ŝ′ j)
in the moving coordinate system, and Û0 = −Û1 from the
boundary conditions (8).

Our basic equations are transformed as follows:

L̂Û j =
Ŝ ′y j − Ŝ ′y j−1

a
+ ikε Ŝ ′x j − Ŝ ′z j, (B·2)

aŜ′ j − iτpVkεaŝ′ j = (ikεaÛ j, Û j+1 − Û j, aÛ j), (B·3){
aσ̂′ − 2Û1 + aŜ ′y0 = −2U+(k)
σ̂′ − τpvp

2πikε
= T−(k) , (B·4)

∫ ∞

−∞
dk

(
2û1

a
− ŝ′y0

)
+ (τp + 1)vp =

√
4G′c

a
, (B·5)

where a2L̂Û j ≡ Û j+1 + Û j−1 − (2 + z2)Û j, aσ̂′ ≡ Û2 − (1 +
z2)Û1−aŜ ′y1+a2(Ŝ ′z1− ikε Ŝ ′x1), and z2 ≡ a2(k2

ε +1). U+ and
T− are undetermined complex functions, and the subscripts +
and − indicate that they are analytic for Im k > 0 and Im k < 0,
respectively.

We first obtain

aŜ′ j = (1 − T̂−1
p )(ikεaÛ j, Û j+1 − Û j, aÛ j),

T̂p ≡ 1 +
1
τp
− 1

iτpkεV
, (B·6)

from eq. (B·3) to eliminate Ŝ′j and ŝ′j from the other equations.
Equation (B·2) is changed to L̂Û j = 0, and its eigenvalue
equation e−λa + eλa − 2 − z2 = 0 is obtained by assuming that
Û j ≡ Û1e−λa( j−1) for j > 0.

Eliminating Û1, the boundary conditions (B·4) are reduced
to a single equation

−α(k)U+(k) =
τpvp

2πikε
+ T−(k), (B·7)

where

α(k) ≡ 2
a

e−λa − 1 − z2

e−λa − 3 − z2 =
2
a

(
z2

z2 + 4

) 1
2

. (B·8)

The WH decompositions into half-space analytic functions,
α(k) = α+(k)α−(k) and

h(k) ≡ −
τpvp

2πiα−kε
= h+(k) + h−(k), (B·9)

yield the solution

U+(k) =
h+(k)
α+(k)

and T−(k) = h−(k)α−(k) (B·10)

since α+U+ − h+ = h− − T−
α−
= 0 by Liouville’s theorem and

the stress continuity requirement at the crack tip for a > 0.
The decompositions are given explicitly by

α±(k) =
(

2
a

1 ∓ ikε
b ∓ ikε

) 1
2

, (B·11)

h+(k) = − 1
2πi

∮
kε=0

dk′
h(k′)
k′ − k

= −
τpvp

2πiα−(−iε)kε
, (B·12)

and h−(k) = h(k) − h+(k), where b ≡
√

1 + 4/a2.
The crack speed is obtained by substituting these expres-

sions into the failure condition (B·5). We then integrate

2û1

a
− ŝ′y0 =

2
a

T̂−1
p Û1

1 − ikεV
=

( 2
a − α)U+
1 − ikεV

(B·13)
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using the residue theorem and obtain∫ ∞

−∞
dk

(
2û1

a
− ŝ′y0

)
= τpvp

−1 +
α−(− i

V − iε)
α−(−iε)

 . (B·14)

Substituting eq. (B·11), eq. (B·5) becomes

vp

τp

√
V + 1
V + 1

b

+ 1

 =
√

4G′c
a

(B·15)

in the limit as ε → 0.
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