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Quasi-Static Deformation of a Granular System with a Regular
Arrangement of Particles

So Kitsunezaki

Abstract In order to study the growth of heterogeneity
in granular systems, we investigate the quasi-static de-
formation of monodisperse particle systems with regular
initial arrangements. We construct a linearized model by
limiting our consideration to infinitesimal deformations.
Assuming Coulomb friction, we introduce new variables
to express the slippage distances of particles in contact.
The results of our numerical simulations show that het-
erogeneities appear through a fingering-like instability and
develop into several microscopic shear zones. The equa-
tions in our model can be reduced to simpler equations in
the limit of small tangential interactions using a perturba-
tive analysis. In the long wavelength limit, the equations
are analogous to models of Laplacian growth, such as the
dielectric breakdown problem. We investigate the insta-
bility of critical stress states and the competitive growth
of microscopic shear zones.
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1
Introduction

When a compression or shear strain is applied to a static
granular system, several shear bands develop and, even-
tually, fracture the system. Such a macroscopic response
to externally applied forces is similar to that exhibited by
elastic and plastic materials. For this reason, macroscopic
shear bands appearing in granular materials have been
studied with the use of elastic theories combined with an
empirical breaking condition, such as the Mohr-Coulomb
criterion, and elasto-plastic theories [1–3]. However, mi-
croscopically, granular materials are qualitatively different
from usual solids. In particular, constituent particles in
granular systems are insensitive to thermal fluctuations,
and any deformation of a static granular system is in-
evitably accompanied by energy dissipation due to fric-
tional interactions among particles. The stress state of a
granular system depends significantly on the history of
its formation [4–9]. In order to understand the creation
mechanism of shear bands in granular systems, we need
to study the dynamics of the constituent particles [10–17].
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Here, we theoretically investigate shear bands in cohe-
sionless granular systems subject to quasi-static deforma-
tion. We consider so-called “sand-box” experiments. In a
general sand box experiment, a system of dry sand held
in a container is deformed slowly by moving one of the
lateral walls of the container. Systems of this type have
been studied as simple models of geophysical faults [18–
20], and the results of such experiments reveal that a series
of parallel shear bands are created sequentially in many
kinds of granular systems, ranging from sand to nearly
monodisperse glass beads.

In a previous work [21], with an experimental study, we
carried out 2-dimensional numerical simulations of monodis-
perse granular systems with regular initial arrangements
using the discrete elements method (DEM) [22]. We in-
vestigated the time development of the stress field before
the creation of shear bands and found that when a shear
deformation is applied to these systems, a fingering-like
instability is created in the stress field, and many micro-
scopic shear bands appear. These bands first appear near
the top surface of the system and then begin to grow down-
ward. In this process, the bands complete, and through
this competition, only a few of the initial bands are se-
lected and grow to ‘macroscopic’ size. The growth of these
shear bands eventually breaks the regular arrangement of
particles, as they come to form a series of faults running
through the system. As a result of the competition of mi-
croscopic shear bands, the spacing between neighboring
faults increases with their length. We noted that the se-
ries of faults in such idealized system are similar to those
observed in experiments although they are different in the
thickness of a fault.

In this paper, we theoretically investigate the initial
response of such regular granular systems to deformation.
Although a fault in regular granular systems is a kind of
dislocation, its creation process can not be understood on
the ground of the statistical physics in contrast with that
of an atomic-scale dislocation. The static properties and
dynamical behavior of granular systems with regular ar-
rangements has been investigated recently in several stud-
ies [23–27]. In the present work, we are here interested in
the dynamics of quasi-static deformation of such systems.

In Sec. 2, we propose a linearized model that is con-
structed by considering the infinitesimal deformation of
regular arrangements of particles. We describe the Coulomb
friction among particles by using new variables to express
the slippage distances of particles in contact. In Sec. 3, we
report that a fingering-like instability of the stress field is
also observed in numerical simulations of this model. In
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Sec. 4 we reduce our model to a system of simpler equa-
tions in the limit of small tangential interactions using
a perturbative analysis. We elucidate the qualitative na-
ture of the mechanism controlling the competitive growth
of microscopic shear zones and carry out a the stability
analysis of critical stress states employing the form taken
by the reduced equations in the long-wavelength limit.

2
Linearized model for infinitesimal deformation

In this section we introduce a model describing the in-
finitesimal deformation of 2-dimensional monodisperse gran-
ular systems with regular arrangements. We consider disks
of radius a and mass m as particles and stack them in a
V-shaped container, as depicted in Fig. 1. The V-shaped
container is oriented so that the axis x bisecting it is tilted
by φg degrees with respect to the direction of gravity. We
apply a uniform shear deformation to the system by open-
ing the walls of the V-shaped container quasi-statically.

We investigated this system numerically using DEM
simulations in a previous work [21]. In that case, we used
an equilateral triangular arrangement of particles as the
initial arrangement. We found that as the walls are opened,
the state of smooth deformation becomes unstable, so that
many microscopic shear zones appear in the stress field.
At this stage, the displacement of every particle is smaller
than the particle size. Therefore a microscopic shear zone
is neither a fault nor a shear band in the usual sense. It
may be interpreted as a kind of “microband” called by
Kuhn [15]. As a result of the growth of these microscopic
shear zones, macroscopic faults are created as faults in
the arrangement of particles. Both the microscopic shear
zones and the resultant faults appear in a series of V-
shaped forms if φg = 0, while as φg increases, the faults
eventually take the form of a series of lines along one di-
rection.

When the microscopic shear zones appear, the num-
ber of contact points is 4 for most particles. The horizon-
tal contacts existing initially among particles are so weak
that, as soon as the walls begin to open, they are lost due
to the Reynolds dilatancy [28]. We found that the above-
stated results of the DEM simulations are unchanged if
instead of the equilateral triangular arrangement used in
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Fig. 1. The initial arrangement of particles.
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Fig. 2. The relative displacement of particles in contact.
The dotted circle represents the particle (i+ 1, j) in the initial
state. Its center moves by 2a∂i+U ij ≡ U i+1j−U ij with respect
to the particle (i, j), and both the particles rotate by Φi+1j and
Φij respectively. The symbol ./ indicates the initial contact
point. The corresponding points on both the particles move to
the positions indicated by . and / respectively.

previous studies we employ a rhombic arrangement com-
posed of nearly equilateral triangles. We believe that such
a rhombic arrangement is more fundamental in these de-
formation processes, as it is more generic than the closest-
packing structure studied previously. In this study, we
consider systems with rhombic initial arrangements and
assume that the set of particles representing the nearest
neighbors of any given particle remains unchanged during
the small deformation process.

In cohesionless granular systems whose particles are
subject to elastic forces in contact, the free energy of the
system is equal to the sum of the elastic energies and the
gravitational potential energies of all particles. We con-
jecture that the system remains in an equilibrium state,
minimizing this free energy, when the boundary conditions
are changed quasi-statically. In order to construct the free
energy, we linearize the elastic forces by assuming that
the relative displacements of particles in contact are suffi-
ciently smaller than the particle size. We assume Coulomb
friction to exist at every contact among the particles. Slip
occurs at a contact point when the magnitude of the tan-
gential component of the elastic force increases beyond the
maximal static frictional force with coefficient µ. We in-
troduce new variables into the free energy to express slip
displacements. As the boundary conditions of the system
change quasi-statically, the slip displacements are assumed
to change slightly at every time that the Coulomb condi-
tion is broken at any contact in such a manner that these
conditions are restored.

We introduce the reference coordinates (ξ, η) along the
walls in the initial state, as depicted in Fig. 1, where α0

indicates the angle between the two axes. ξ̂ and η̂ repre-
sents the unit vectors in the ξ and η directions. Particles
are positioned at xij ≡ 2a(iξ̂+ jη̂) when every particle is
in contact without deformation, where 2a is the diameter
of a particle, and i and j are integers. We refer to each
particle on the rhombic lattice by the corresponding site
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(i, j). Each particle remains in contact with its 4 nearest
neighbors while it translates and rotates. The quantities
U ij and Φij represent the displacement and the rotation
angle, respectively, of the particle (i, j). We express the
components of U ij as Uij ≡ ξ̂ · U ij and Vij ≡ η̂ · U ij .
Defining the perpendicular unit vectors η̂⊥ and ξ̂⊥ by
ξ̂ · ξ̂⊥ = η̂ · η̂⊥ = 0 and ξ̂ · η̂⊥ = η̂ · ξ̂⊥ = sinα0, the
displacement can be written

U ij =
1

sinα0
(Uij η̂⊥ + Vij ξ̂⊥). (1)

We construct the free energy of the system as a func-
tion of (Uij , Vij , Φij), assuming that Uij , Vij ¿ a and
Φij ¿ 1. As in the DEM, we represent the elastic forces
on each contact point by two linear springs acting in the
normal and tangential directions with spring constants kn
and kt, respectively. In order to determine the elastic de-
formations of the springs, we consider the contact of two
disks to result not in mutual deformation but, rather, over-
lap. Treating the particle-particle interaction in this man-
ner simplifies the model, while we believe that employing
a more realistic deformation would not alter the results
significantly. We consider the two contacts of the parti-
cle (i, j) at which it contacts the particles (i + 1, j) and
(i, j + 1). As shown in Fig. 2, the relative displacements
for these contacts are given by{
∆ξ ij ≡ 2a∂i+U ij − a(Φij + Φi+1 j)ξ̂⊥
∆η ij ≡ 2a∂j+U ij + a(Φij + Φi j+1)η̂⊥

, (2)

to linear order. Here, we have defined ∂i±Aij ≡ ±(Ai±1 j−
Aij)/2a and ∂j±Aij ≡ ±(Ai j±1 − Aij)/2a. We interpret
the normal components ∆ξ ij · ξ̂ and ∆η ij · η̂ as the dis-
placements of the normal springs. In contrast, the tan-
gential component at each contact is assumed to be the
sum of the elongation of the tangential spring and the slip
displacement. We introduce the new variables to represent
Ψξ ij and Ψη ij to express the slip displacements divided by
the particle diameter 2a, and interpret ∆ξ ij · ξ̂⊥− 2aΨξ ij
and ∆η ij · η̂⊥ + 2aΨη ij as the displacements of the tan-
gential springs. Therefore, the elastic forces acting on the
respective contacts of the particle (i, j) are expressed as
f ξ ij ≡ 2a(knNξ ij ξ̂ + ktTξ ij ξ̂⊥), (3)
fη ij ≡ 2a(knNη ij η̂ + ktTη ij η̂⊥), (4)
where
Nξ ij ≡ ∂i+Uij , Nη ij ≡ ∂j+Vij , (5)

Tξ ij ≡ ∂i+Vij − cosα0∂i+Uij
sinα0

− Φij + Φi+1 j

2
− Ψξ ij , (6)

Tη ij ≡ ∂j+Uij − cosα0∂j+Vij
sinα0

+
Φij + Φij+1

2
+ Ψη ij . (7)

The gravitational potential energy of particle (i, j) is−mg·
U ij = m(gξUij + gηVij), where g ≡ −gξξ̂ − gηη̂ denotes
the acceleration due to gravity.

A state of this system is represented by the set {Sij},
where Sij ≡ (Uij , Vij , Φij , Ψξ ij , Ψη ij). We set 2a, m, kn
and g to 1 through the rescaling xij → 2axij , kt → ktkn,
g → gg and (Uij , Vij , 2aΦij , 2aΨξ ij , 2aΨη ij)→ mg

kn
Sij . As

a result, the energy of the system is obtained as
E{Sij} =

∑

ij

(Eg ij + Ee ij), (8)

Eg ij ≡ gξUij + gηVij , (9)

Ee ij ≡ 1
2

(N2
ξ ij +N2

η ij) +
1
2
kt
(
T 2
ξ ij + T 2

η ij

)
. (10)

These equations are essentially the same as the equations
of the DEM simulations for infinitesimal deformations un-
der compressive stress [21]. We conjecture that the slip
displacements Ψξ ij and Ψη ij change quasi-statically with
the boundary conditions. Therefore, the following equi-
librium equations are obtained by differentiating E with
respect to Uij , Vij and Φij , with all values of the slip dis-
placements fixed:

∂i−Nξ ij +
kt

sinα0
(∂j−Tη ij − cosα0∂i−Tξ ij) = gξ, (11)

∂j−Nη ij +
kt

sinα0
(∂i−Tξ ij − cosα0∂j−Tη ij) = gη, (12)

(
1− 1

2
∂i−

)
Tξ ij =

(
1− 1

2
∂j−

)
Tη ij . (13)

Two particles in contact slip with respect to each other
slightly at every time that the Coulomb conditions are
broken as the boundary conditions change quasi-statically.
For the two contacts of the particle (i, j) mentioned above,
the Coulomb conditions are expressed as
kt|Tξ ij | ≤ −µNξ ij and kt|Tη ij | ≤ −µNη ij , (14)
using the frictional coefficient µ. We ignore the details of
the frictional interaction, such as the difference between
the values of the static and dynamic frictional coefficients.
Slip occurs in such a manner that the magnitude of the
tangential elastic force is reduced at the contact. We ob-
tain the update rules for the slip displacements Ψξ ij and
Ψη ij by enforcing the above Coulomb conditions at all
contacts. When the Coulomb conditions are broken at
some contact point, the slip displacement is updated to
the value for which the equality is satisfied.

The state of the system, {Sij}, is determined from the
equilibrium equations (11)-(13) and the update rules (14),
under appropriate boundary conditions. All of the param-
eters that depend on the properties of the constituent par-
ticles are kt and µ. We note that formally these equations
do not change in the limit of hard particles, because the
tangential spring constant kt is rescaled by the normal
spring constant kn.

Note that the energy (8) is identical for all states re-
lated through the non-sliding mode, in which all particles
rotate alternately in the clockwise and counterclockwise
directions, according to Φi+1 j = Φij+1 = −Φij . Although
it is known that this mode is important when the bound-
aries of the system are time dependent [24–26], we believe
that it is not important in quasi-static processes, because
it is determined by the boundary conditions.

3
Numerical simulations

The results of our numerical simulations of the linearized
model considered presently are consistent with those ob-
tained previously from the DEM simulations [21]. Our nu-
merical simulations of the linearized model were carried
out by repeating the following three steps.

1. For given boundary conditions and slip displacements,
we calculate the equilibrium state (Uij , Vij , Φij) by min-
imizing the energy (8) using the conjugate gradient
method with a tolerance of 10−6 [29].
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(a) Internal frictional angles φ
(ij)
c (b) Deformation of the lattice (c) Slip displacements Ψη ij

Fig. 3. Snapshots obtained from a numerical simulation with frictional coefficient µ = 0.5.

2. We check the Coulomb conditions (14) for every parti-
cle and, if the conditions are broken, update the values
of the slip displacements Ψξ ij and Ψη ij .

3. We increase the angle made by the V-walls. We denote
this angle by α, where initially α = α0, and express the
rotation angle by θ ≡ 2akn(α − α0)/mg. With each
increment, θ is increased by a value ∆θ = 10−4 by
rotating the right wall.

Here, we moved the boundary by rotating the right wall
of the V-container in the clockwise direction, with the left
wall fixed.

We prepared initial arrangements in which the tan-
gential forces ktTξ ij and ktTη ij vanish for every particle
by choosing appropriate initial values for Ψξ ij and Ψη ij
at θ = 0. The upper surface, where i + j = L − 1, is a
free boundary. We assumed that, at each wall (i.e. i = 0
and j = 0), particles are fixed in the normal direction
and move freely along the wall. The results of the numer-
ical simulations were found to be insensitive to details of
the boundary conditions at the walls. In particular, they
do not change qualitatively when we used fixed boundary
conditions.

Figure 3 displays the three kinds of snapshots obtained
at θ = 20 from a numerical simulation using the parame-
ter values L = 100, kt = 0.1, µ = 0.5 and φg = −15◦.
In these snapshots, ξ and η are displayed as orthogo-
nal, although in fact we used α0 = 60◦ here. We note
that the parameters kn, a, m and g are not contained in
this model, and the arrangement of particles is rhombic
even in the case of α0 = 60◦. The results do not change
qualitatively if either α0 or φg is varied by several de-
grees. Figure 3(a) is a gray-scale image of the internal
frictional angles φ(ij)

c in the system, where φ(ij)
c is calcu-

lated from the equation cosφ(ij)
c = 2

√
detσ(ij)/|Trσ(ij)|

by defining the stress tensor of the particle (i, j) as σ(ij) ≡
1
2{(f ξ ij + f ξ i+1 j)ξ̂+ (fη ij + fη ij+1)η̂} [13]. Figure 3(b)
depicts the deformation of the lattice, which is drawn with
an appropriate scale, after subtracting the initial deforma-
tion and a uniform shear deformation. The shading of the
small circle positioned at each site represents the rota-
tion angle Φij . Here, for a counterclockwise rotation, the

shading becomes darker as the magnitude of the rotation
increases, while for any clockwise rotation, the circle is
white. Figure 3(c) displays a gray-scale image of the slip
displacements Ψη ij . We note that Ψη ij here represents the
total slippage distance from the initial state, not that for
the present time step alone. In many areas of nonvanishing
Ψη ij , in fact there was no slip in the present time step.

As the wall is rotated, microscopic shear zones appear
from the vicinity of the surface, and, as a result of com-
petitive growth, some of them survive and grow in length.
The microscopic shear zones are approximately parallel to
the η direction when φg is negative, that is, when gη < gξ.
In these shear zones, the slip displacements Ψη ij increase
with the rotation of the wall, while the values Ψξ ij do
not change. Particles slip at the contact points positioned
along the η direction. Contrastingly, they roll without slid-
ing at the contacts positioned along the ξ direction. These
results are consistent with those obtained from our previ-
ous work.

We observed that the elastic compressive forces along
the η direction, |Nη ij |, decrease along these shear zones
as the wall rotates. Such decreasing makes it easier for
the second Coulomb condition of Eq. (14) to be broken.
For this reason, the direction of the microscopic shear
zones is inclined toward the minimum principal axis of
stress rather than the maximum principal axis. As the
wall rotates further, Nη ij becomes positive at some con-
tact points in the developed shear zones. Because it is
impossible for the interactions between particles in dry
granular systems to become attractive, we infer that these
contacts are lost, as observed in the DEM simulations. We,
however, believe that this is unimportant in the initial de-
formation process, because the number of such points is
small.

The microscopic shear zones migrate in the ξ direction,
while growing in length in the η direction. The triangular
gray regions of nonvanishing Ψη ij in Fig. 3(c) appear as
a result of such migrations. The migration distance de-
creases with the frictional coefficient µ. Figure 4 displays
a gray-scale image of the slip displacements Ψη ij obtained
using a smaller coefficient, µ = 0.1.
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Fig. 4. A snapshot of slip displacements
obtained from a numerical simulation us-
ing µ = 0.1.
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Fig. 5. The deformation field
caused by a single shear zone.
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Fig. 6. The 1-d perturbation of
the critical state used in the sta-
bility analysis. The contours of
the displacement v′ correspond
to ξ = β′η + const.

4
Perturbative analysis

In order to investigate Eqs. (11)-(14) analytically, we first
derive the leading-order terms of these equations in the
limit of small tangential interactions. We express the change
of state from the initial state Sij = (U0

ij , V
0
ij , 0, Ψ

0
ξ ij , Ψ

0
η ij)

as sij ≡ (uij , vij , φij , 0, ψη ij). Assuming that Ψξ ij does
not change at any contact, we consider the simple case in
which microscopic shear zones develop approximately par-
allelly to the η axis, as mentioned in the previous section.
We assume that this disturbance changes slowly along the
η direction in comparison to the ξ direction in this limit.

The initial state is determined by the equilibrium equa-
tions, ∂i−N0

ξ ij = gξ, ∂j−N0
η ij = gη and T 0

ξ ij = T 0
η ij = 0,

where N0
ξ ij , N

0
η ij , T

0
ξ ij and T 0

η ij represent the initial con-
tact forces defined by Eqs. (5)-(7). The quantities N0

ξ ij

and N0
η ij are negative and decrease with the distance from

the free surface as N0
η ij = −gη(L− 1− i− j).

The equilibrium equations with respect to uij , vij , φij
and ψη ij are linear and homogeneous. They are obtained
from Eqs. (11)-(13), and their left-hand sides are the same
as those of the original equations, except that Sij is re-
placed by sij . Introducing a small parameter ε in term of
which to carry out the perturbative analysis, we assume
that the differences ∂i± and ∂j± of these variables are or-
der 1 and ε, respectively. We first determine the orders of
the variables contained in the equations as follows. The re-
sults of the numerical simulations indicate that the change
of the elastic force Nη ij , i.e. ∂j+vij , becomes of the same
order as the initial value N0

η ij along microscopic shear
zones. Because N0

η ij is independent of ε, we assume that
the displacements vij are order ε−1. Local shear strains
in microscopic shear zones induce slips and rotations of
particles. Therefore, φij and ψη ij are expected to be of
the same order as ∂i+vij , that is, ε−1. Using these esti-
mations, we investigate the equilibrium equations derived
from Eqs. (11) and (12). In order to balance the two terms
in each equation, the parameter kt and the displacement
uij must satisfy kt ∼ ε2 and uij ∼ ktvij ∼ ε. Similar con-
sideration leads us to conclude that µ should be order ε

to balance both sides of the second Coulomb condition in
Eq. (14). These order estimates of kt and µ indicate that
the tangential interactions among particles decrease with
ε.

Assuming that kt ∼ ε2, µ ∼ ε, vij , ψη ij , φij ∼ ε−1 and
uij ∼ ε, based on the above arguments, we extract the
terms of lowest order in ε from the equilibrium equations.
From Eqs. (6) and (7), we obtain

Tξ ij =
∂i+vij
sinα0

−
(

1 +
1
2
∂i+

)
φij , (15)

Tη ij = φij + ψη ij . (16)
The equilibrium equations (11)-(13) are reduced to

∂i−∂i+uij − kt
tanα0

∂i−Tξ ij = 0, (17)

∂j−∂j+vij +
kt

sinα0
∂i−Tξ ij = 0, (18)

(
1− 1

2
∂i−

)
Tξ ij = Tη ij , (19)

and, from the second condition in Eq. (14), the Coulomb
condition is expressed as
µ
(
N0
η ij + ∂j+vij

) ≤ ktTη ij . (20)
Here, we have chosen the sign of Tη ij to be negative so
that it corresponds to the situation in our numerical sim-
ulations.

Excluding Eq. (17), Eqs. (18)-(20) are closed with re-
spect to the three variables vij , φij and ψη ij . We treat
these variables as continuous functions, vi(η), φi(η) and
ψη i(η), and approximate the finite difference in the η di-
rection, ∂j±, by the differentiation operator ∂η. It is con-
venient to introduce the new variables

v′i ≡
vi

sinα0
and η′ ≡

√
kt
2

η

sinα0
. (21)

Then, substituting Eqs. (15) and (16) into Eq. (19), we
obtain the equation
2Iiφi = ∂iv

′
i − ψη i, (22)

where we have defined the finite differential operators

Ii ≡ 1 +
1
8
∂i−∂i+ and ∂iv

′
i ≡

1
2

(v′i+1 − v′i−1). (23)

Because the Fourier transform of Ii is finite for any mode,
we can solve the above equation formally by introducing
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the inverse operator I−1
i . Substituting it into Eqs. (18)

and (20), we finally obtain the following equations:(
∂2
η′Ii + ∂i−∂i+

)
v′i = −∂iψη i, (24)

N ′0η i + (µ′∂η′ − I−1
i ∂i)v′i ≤

(
2− I−1

i

)
ψη i, (25)

where

µ′ ≡
√

2
kt

µ and N ′0η i ≡
2µ
kt
N0
η ij . (26)

These equations are closed with respect to v′i and ψη i.
The slip displacement ψη i deforms the lattice around the
contact point in the direction of ξ̂⊥, and the deformation
v′i affects the slip condition at each contact. The function
N ′0η i(η) is determined by the initial conditions. We find
that the behavior of the system in the case of small defor-
mations is essentially determined by the parameter µ′ for
given initial and boundary conditions.

As a first application of the simplified equations de-
rived above, we investigate the effect of uniform shear
deformation caused by the rotating wall. To lowest or-
der in ε, the boundary conditions used in our numerical
simulations are written ∂η′v

′
i = 0 on the free surface and

v′i(0) = −θi on the ξ axis. When no slip appears of any
contact (i.e., ψη i = 0), uniform shear deformation repre-
sented by v′i(η) = −θi is the solution of Eq. (24) satisfying
these boundary conditions. Substituting this solution into
the Coulomb condition (25), we obtain N ′0η i + θ ≤ 0. As
the angle of the wall θ increases, particles begin to slip at
the contacts where this condition is broken. Because N ′0η i
decreases as the distance from the free surface increases,
we find that the slip region appears from the vicinity of
the free surface.

We next consider the long wavelength limit of Eqs. (24)
and (25) with respect to ξ by replacing the operator Ii by
1. Then, we treat the variables as continuous functions
v′(ξ, η′), ψη(ξ, η′) and N ′0η(ξ, η′) and approximate ∂i± by
the differentiation operator ∂ξ. The left-hand side of Eq.
(24) becomes (∂2

η′ + ∂2
ξ )v′ ≡ 4v′. Therefore, the displace-

ment v′ is analogous to an electrostatic potential when we
regard the slip displacement ψη as the density of dipoles
pointing in the negative ξ direction. Defining the “electric
field” E′ ≡ −(∂ξv′, ∂η′v′) and the vector ν ≡ (1,−µ′),
the approximate forms of Eqs. (24) and (25) in this limit
are
4v′ = −∂ξψη and N ′0η + ν ·E′ ≤ ψη. (27)
We believe that with regard to the qualitative behavior
of solutions, these are the same as the original equations,
although they are not correct quantitatively in the vicinity
of microscopic shear zones.

The above equations are similar to those describing the
dielectric breakdown problem. It is known that a fingering-
like pattern appears in the spatial distribution of the di-
electric constant εe(r) in the system considered in that
problem. For a given εe(r), the electric potential ve(r) is
determined by the equation ∇ · (εe∇ve) = 0 [30]. Electric
breakdown caused by a strong electric field increases the
value of εe(r). We here assume that a uniform electric field
E0 exists initially in the negative x direction. Then, if the

change of the potential, v′e(r) ≡ ve(r)−E0x, is sufficiently
small, this equation can be approximated as
4v′e = −∇ve·∇ log εe ' −∂xψe, where ψe ≡ E0 log εe.(28)
This has the same form as the first equation of Eq. (27).
Therefore, we can regard the development of heterogeneity
in the stress field as a kind of breakdown phenomenon.

We now investigate the deformation caused by a straight
shear zone using Eq.(27). We assume the semi-infinite slip
displacement ψ′ = Kδ(ξ)Θ(η′) in an infinite system (as
depicted in Fig. 5), where K is a positive constant and
Θ(x) is the Heaviside function. The solution is
E′ = (K/2πr′2)(−η′, ξ). (29)
Here, we have defined the distance from the tip of the
shear zone as r′ ≡

√
ξ2 + η′2. The stress field decays in

a form inversely proportional to r′. We note that this de-
pendence differs from that of a crack in elastic materials,
although shear zones in granular systems natively appear
to be similar to mode-II cracks in the long-range effect to
the stress field. When a shear zone develops, new slip is
inhibited in the region satisfying ν · E′ < 0, behind the
tip. We infer that such a screening effect causes compet-
itive growth of microscopic shear zones. In contrast, we
conjecture that the shear zone develops in the direction
of the largest value of ν ·E′ from the tip. This direction
tilts from the η axis as µ′ increases. This suggests that the
migration distance of microscopic shear zones in the ξ di-
rection increases as a function of the frictional coefficient
µ.

We finally show that the critical stress state of this
system is unstable with respect to simple shear deforma-
tion. In the critical stress state, the particles in the system
slip uniformly, so that the equality in the Coulomb condi-
tion holds at every contact. In this case, substituting the
second equation of Eq. (27) into the first, we obtain the
hyperbolic equation
∂η′(∂η′ + µ′∂ξ)v′ = −∂ξN ′0η. (30)
The critical state is determined by this equation. Here,
we apply the simple shear boundary condition v′(L, η′)−
v′(0, η′) = −θL to an infinite system along the η direction,
as depicted in Fig. 6. Assuming that a series of microscopic
shear zones tilted by a slope β from the η axis develops
as a result of instability, we investigate the case in which
the perturbations from the critical stress state, δv′ and
δψη, can be expressed as functions of the single variable
ξ − βη′. Then, from Eq. (27), we obtain the equations for
δv′ and δψη:
(β2 + 1)∂2

ξ δv
′ = −∂ξδψη and − (µ′β+ 1)∂ξδv′ ≤ δψη.(31)

The slip displacement δψη increases if the second condi-
tion here is broken. We integrate the first equation, em-
ploying the boundary condition δv′(L, η′)− δv′(0, η′) = 0,
and obtain the solution
(β2 + 1)∂ξδv′ = 〈δψη〉 − δψη, (32)
where 〈δψη〉 ≡ 1

L

∫ L
0
dξδψη. Substituting this solution into

the second condition in Eq. (31), the Coulomb condition
is obtained in terms of δψη alone as
β(µ′ − β)δψη ≤ (1 + µ′β)〈δψη〉. (33)
No slip occurs if δψη satisfies this inequality everywhere.
In particular, for 0 < β < µ′, this condition gives the up-
per threshold of δψη for stability, and if δψη is larger than
the threshold somewhere, the perturbation is inferred to
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grow. For a slope β = (−1 +
√

1 + µ′2)/µ′ ≡ βc, this up-
per threshold is smallest for a given spatial average 〈δψη〉,
and Eq. (33) can be rewritten

δψη ≤ 1
β2
c

〈δψη〉. (34)

Thus the critical stress state is unstable with respect to a
finite perturbation. We note that βc is an increasing func-
tion of µ′ and approaches 1. The threshold decreases as the
frictional coefficient µ increases. In the case that a non-
vanishing area of δψη is localized in the system, the spa-
tial average 〈δψη〉 decreases as the area becomes smaller.
Therefore, a single localized zone appearing in the critical
state always develops in a large system.

5

Conclusions

We investigated quasi-static deformation processes in ide-
alized systems with regular arrangements of identical par-
ticles. The purpose of this study was to understand the
role of frictional interactions between constituent parti-
cles in the dynamics. For infinitesimal deformations of
such systems, we proposed a lattice model linearized with
respect to the displacements of particles. We introduced
slip displacements of particles in contact as new variables
in this model and considered Coulomb friction. It should
be noted that some information about the history of the
deformation is preserved in the form of the slip displace-
ments. The numerical simulations show that the stress
field and the slip displacements develop heterogeneously
when a shear deformation is applied to the system, as
found in the previous DEM simulations. We found that
microscopic shear zones appear through a fingering-like
instability of the stress field, and some of them grow in
length while migrating in the direction perpendicular to
the direction of their growth.

In the limit of small tangential interactions, we derived
approximate equations from this model using a perturba-
tive analysis. In the long wavelength limit, these equations
are analogous to a model of dielectric breakdown. Through
this analogy we can interpret the slip displacement as a
dipole density and the displacement of each particle as
an electric potential. On the basis of these equations, we
studied the screening effect of a single microscopic shear
zone and the stability of the critical stress state.

We expect that these results shed light on the dynam-
ics of microbands [15] and the creation process of shear
bands. The creation process in actual granular systems is
more complicated because the arrangements of particles
are irregular. It is a subject for a further study to inves-
tigate the effect of the size distribution of particles to the
dynamics of quasi-static deformation.

It is a pleasure to acknowledge H. Hayakawa and C. Urabe
for fruitful discussions. We thank G. C. Paquette for reading
the manuscript conscientiously. This study is supported by a
Grant-in-Aid from the Japan Science and Technology Corpo-
ration.

Notation

ξ ≡ 2ai and η ≡ 2aj are the reference coordinates along
the walls in the initial state. The subscript ij and the
superscript (ij) denote values of the particle (i, j), and the
subscript i denotes values of continuous functions with
respect to η at ξ = 2ai. The superscript 0 denotes initial
values.

The finite differential operators ∂i±Aij ≡ ±(Ai±1 j −
Aij)/2a and ∂j±Aij ≡ ±(Ai j±1 − Aij)/2a are defined. Ii
and ∂i are defined by Eq.(23).

The list of symbols below gives those which appear in
two or more paragraphs.

�̂, �̂ Unit vectors in the ξ and η directions

�̂⊥, �̂⊥ Inward unit vectors perpendicular to �̂ and �̂
a Radius of a particle
m Mass of a particle
x Reference position of a particle
g Acceleration due to gravity

gξ, gη g ≡ −gξ�̂ − gη�̂
φg Angle of the x axis bisecting the V-shaped con-

tainer with respect to g
µ frictional coefficient

kn, kt Normal and tangential spring constants
α Angle made by the V-walls
θ θ ≡ 2akn(α− α0)/mg
L System size (number of particles along a wall)
U Displacement of a particle
U, V ξ and η components of U
Φ Rotation angle of a particle

Ψξ, Ψη Slip displacements divided by 2a
S State of a particle, S ≡ (U, V, Φ, Ψξ, Ψη)

fξ, fη Elastic forces acting on a particle
Nξ, Nη Normal components of fξ and fη
Tξ, Tη Tangential components of fξ and fη

u, v, φ, ψη Change of U , V , Φ, Ψη from the initial state
s Change of state, s ≡ (u, v, φ, 0, ψη)
ε Small parameter for the perturbative analysis

v′, η′ Variables defined by Eq.(21)
µ′, N ′η Parameter and variable defined by Eq.(26)
E′ E′ ≡ −(∂ξv

′, ∂η′v
′)

� � ≡ (1,−µ′)
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